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Abstract: We show how many contemporary issues in event generation can be recast in

terms of partonic calculations with a matching scale. This framework is called GenEvA,

and a key ingredient is a new notion of phase space which avoids the problem of phase

space double-counting by construction and includes a built-in definition of a matching

scale. This matching scale can be used to smoothly merge any partonic calculation with

a parton shower. The best partonic calculation for a given region of phase space can be

determined through physics considerations alone, independent of the algorithmic details of

the merging. As an explicit example, we construct a positive-weight partonic calculation for

e+e− → n jets at next-to-leading order (NLO) with leading-logarithmic (LL) resummation.

We improve on the NLO/LL result by adding additional higher-multiplicity tree-level (LO)

calculations to obtain a merged NLO/LO/LL result. These results are implemented using

a new phase space generator introduced in a companion paper [1].
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1. Introduction

Despite facing a complicated detector environment, top quark [2] and W boson [3, 4]

studies at the Tevatron have proved that it is nevertheless possible to make precision

measurements at hadron colliders. With the upcoming Large Hadron Collider (LHC), a

complete understanding of Standard Model backgrounds will be essential for discovering

new physics at the energy frontier [5 – 7]. Therefore, precision theoretical calculations are

needed to complement the increasingly sophisticated experimental techniques available at

hadron colliders. At lepton colliders, data is often compared to theoretical predictions for

inclusive quantities, but at hadron colliders, it is more typical for data to be compared to

theoretical predictions for exclusive quantities in order to more readily apply experimental

cuts that may not be well defined in an inclusive theoretical framework.

Monte Carlo programs have proved indispensable for making exclusive theoretical pre-

dictions. Together with parton distribution functions, hadronization models, and underly-

ing event models, traditional event generators [8 – 20] agree remarkably well with Tevatron

data over a wide variety of experimental observables [21, 22]. However, in anticipation of

further theoretical progress in refining Standard Model (and Beyond the Standard Model)

predictions, it is worthwhile to consider possible improvements to the traditional Monte

Carlo approach. There has been much work in recent years on merging fixed-order matrix

element calculations with parton showers [23 – 35]. Furthermore, there are several pro-

grams which implement higher-order calculations to produce inclusive cross sections [36 –

39], though these next-to-leading (NLO) order programs are not cast in the form of a

Monte Carlo program that can generate fully-hadronized exclusive events. While several

ideas exist in the literature of how to implement a combination of NLO results and par-

ton showers [40 – 53], only a few publicly available programs currently exist [54, 55] that

implement this properly.

At the level of partons, current event generators are based on two independent frame-

works: fixed-order matrix element calculations and parton showers. While fixed-order

calculations include quantum interference and can be systematically improved through

perturbative loop calculations, parton showers are always necessary to generate additional

QCD radiation in a Monte Carlo framework. This is because fixed-order calculations cannot

handle the large number of final states typically present in high-energy collisions. Schemat-

ically, the way the fully differential hadronic cross section dσ is achieved in a traditional

approach is through

dσtrad. = MC
(

|M|2 dΦ
)

, (1.1)

where |M|2 represents a fixed-order QCD calculation, dΦ represents a fixed-multiplicity

phase space algorithm, and MC represents the action of a showering/hadronization scheme.

The main challenge of eq. (1.1) is that the actual partonic four-momenta are generated both

through the action of dΦ and MC, and in order to avoid phase space double-counting, either

|M|2 has to be modified from the value calculated in QCD, or the action of MC has to

modified to accommodate the fixed-order calculation, or both.

In this paper, we present a new Monte Carlo framework GenEvA— for Generate

Events Analytically — that allows almost any parton-level calculation to be translated

– 2 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
0

into hadron-level events in a generic way with only a minimal modification of field theo-

retic methods.1 The key idea is to separate the physics considerations, which determine the

appropriate distribution to use, from the algorithmic details, which define how phase space

is generated and what models are used to perform additional showering and hadronization.

As we will see, it is possible to separate the physics and algorithmic issues using a matching

scale µ. Schematically, the fully differential hadronic cross section dσ in GenEvA is given by

dσGenEvA = |M(µ)|2 dMC(µ) . (1.2)

The quantity dMC(µ) represents both a phase space algorithm and a shower-

ing/hadronization scheme that starts generating radiation at the scale µ. The only

information the “partonic calculation” |M(µ)|2 needs to know about the specific imple-

mentation of phase space generation and showering is this matching scale µ. From the

point of view of the partonic calculation, µ is an infrared scale and can be thought of as

the scale at which the partonic calculation is interfaced with a parton shower. We will see

that the details of this matching are independent of any specific parton shower algorithm.

While the partonic calculation |M(µ)|2 does not necessarily correspond to a traditional

QCD amplitude,2 we will show various ways that |M(µ)|2 can be determined solely in the

context of perturbative QCD, independent of the algorithmic details of dMC(µ).

In this way, GenEvA allows the user to focus on determining the most accurate dif-

ferential cross section in a given region of phase space, instead of trying to figure out an

algorithm which not only covers phase space with the right distributions, but also inter-

faces cleanly with a showering/hadronization scheme. As a concrete example of the power

of the GenEvA framework, we will present a conceptually simple implementation of two

known methods to improve the accuracy of Monte Carlo: parton shower/matrix element

merging (PS/ME) [23 – 35] and Monte Carlo at next-to-leading order (PS/NLO) [40 – 53].

In previous approaches, PS/ME merging and PS/NLO merging relied on different Monte

Carlo algorithms, but in the context of GenEvA, they correspond just to different choices

for |M(µ)|2 and share the same algorithmic underpinnings.

In fact, GenEvA allows PS/ME merging and PS/NLO merging to be combined to create

a positive-weight Monte Carlo sample that merges NLO information with higher-order tree-

level (LO) matrix elements and leading-logarithmic (LL) resummation. The simplicity with

which we achieve an NLO/LO/LL merged sample through a special choice for |M(µ)|2 sug-

gests obvious generalizations to including next-to-next-to-leading order (NNLO) or next-

to-leading logarithmic (NLL) information in event generators, though we will not pursue

those directions in the present work.

Our focus will be on getting the most accurate distribution possible using available

theoretical tools, and not necessarily on generating these distributions efficiently. In a com-

panion paper [1], we describe a dMC(µ) generator based on parton shower reweighting [63],

1This framework is unrelated to the “Geneva” jet algorithm [56].
2In the context of soft-collinear effective theory (SCET) [57 – 60], |M(µ)|2 corresponds to the square of

a Wilson coefficient and dMC(µ) corresponds to the matrix element of an SCET operator [61, 62]. This

explains why there should be a cancellation of the µ dependence in |M(µ)|2dMC(µ). While SCET offers

formal definitions for what |M(µ)|2, dMC(µ), and µ are, these formal definitions are not necessarily required.
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and we will see that certain gains in efficiency come as a bonus for using the parton shower

as a phase space generator. However, the GenEvA framework is more general than the

specific algorithmic implementation in ref. [1]. Though we anticipate extending GenEvA to

handle the full range of Standard Model processes at hadron colliders, we will focus here

on the process e+e− → n jets, which is sufficiently complicated to highlight all of the novel

techniques introduced by GenEvA. In the companion paper [1], we comment on additional

technical issues that arise in trying to understand Tevatron or LHC physics.

In the next section, we review the challenges faced when constructing Monte Carlo tools

and the insights offered by GenEvA. In section 3, we discuss the GenEvA framework in a sim-

ple toy model. We then transition to the more complicated case of QCD, where we discuss

the first emission in detail in section 4 and extend the results to multiple emissions in sec-

tion 5. After showing results from the GenEvA program in section 6, we conclude in section 7.

2. Overview of the GenEvA framework

2.1 The challenge of QCD

To build a perfect Monte Carlo program, one would need a complete description of the

Standard Model that is valid over all of phase space. Unfortunately, no such description

exists, mainly because we do not have a complete description of QCD that is valid for every

energy scale and every kinematic configuration. Instead, we know various limits of QCD,

various perturbative expansions of QCD, and various phenomenological models based on

QCD. The best Standard Model Monte Carlo program we can hope to build is one that

coherently combines as many descriptions of QCD as possible.

One crucial combination that has been the subject of many recent advances in Monte

Carlo is the merging of fixed-order calculations with parton showers. Fixed-order calcu-

lations are reliable when pairs of partons are well separated in phase space, while parton

showers are reliable in the soft-collinear limit. For this reason, a Monte Carlo program that

combines both descriptions has a better chance to correctly describe experimental data over

a broad range of observables and energy scales. The problem with the language of “fixed-

order calculation” and “parton shower” is that these terms convolute calculational defini-

tions with algorithmic ones, and the goal of the GenEvA framework is to isolate the calcula-

tional from the algorithmic challenges involved in combining different descriptions of QCD.

As shown in figure 1, a fixed-order calculation is based on a perturbative expansion

of QCD to fixed order in αs. To distribute events according to a fixed-order calculation,

one usually uses a non-Markovian algorithm (such as an adaptive grid) to generate points

in fixed-multiplicity n-body phase space dΦn. The parton shower, on the other hand, is

defined in the soft-collinear limit of QCD, and the splitting functions and Sudakov factors

are calculated in this limit. Parton showers are usually used in the context of a Markovian

phase space algorithm that recursively generates all of variable-multiplicity phase space

through a probabilistic mapping of dΦn → dΦn+1.
3 Therefore, in trying to combine a

fixed-order calculation with a parton shower, one is simultaneously trying to merge two

3More general parton showers such as in refs. [34, 35] can also have non-Markovian aspects.
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Figure 1: The traditional approach to merging fixed-order calculations with parton showers. Tradi-

tionally, fixed-order calculations tie a perturbative expansion to a non-Markovian fixed-multiplicity

phase space algorithm. The parton shower ties a kinematic expansion to a Markovian variable-

multiplicity phase space algorithm. Hence, in trying to merge fixed-order calculations with parton

showers, one is led to simultaneously having to merge two different QCD expansions and two dif-

ferent algorithmic methods to generate phase space. On the algorithmic side, imposing a phase

space cut µ to separate the two different algorithms would results in residual µ dependence and

uncanceled infrared divergences as explained in the text. GenEvA is based on imposing a calcula-

tional µ cut that separates QCD calculations from QCD phenomenological models. This requires

splitting the parton shower into a formal component and a phenomenological component.

different expansions of QCD and two different phase space algorithms. Indeed, currently

there does not exist a solution for how to merge generic fixed-order calculations with parton

showers, mainly because separate algorithmic merging procedures are currently necessary

depending on whether one is considering tree-level calculations or one-loop calculations.

Naively, one might hope to define an algorithmic phase space cut µ to separate fixed-

order calculations from parton showers as on the right side of figure 1. One could imagine

using a fixed-order calculation when the invariant mass between two partons is greater

than µ and using a parton shower when the invariant mass is less than µ. This algorithmic

µ would immediately solve the problem of double-counting that arises when the parton

shower acting on n-body phase space covers exactly the same phase space regions as an
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(m > n)-body generator. However, this approach is suspect for two reasons. First, the

parton shower resums the leading Sudakov logarithms [64] in the problem, so if the parton

shower is only used below µ, it will exhibit double-logarithmic αs log2 µ sensitivity to this

arbitrary, unphysical µ scale. Second, infrared divergences in virtual diagrams contributing

to the fixed-order results are canceled by collinear and/or soft real-emission diagrams, which

are by definition contributing below the scale µ and are therefore contained in the parton

shower picture. Thus, one has to somehow link the fixed-order calculation to the parton

shower in order to properly cancel infrared divergences.

We argue that a better definition of µ is as a calculational scale that separates cal-

culations performed in QCD from phenomenological models based on QCD as on the left

side of figure 1. This requires cleanly separating two different uses of the parton shower.

Above the scale µ, the parton shower corresponds directly to quantities that can be de-

fined formally in the soft-collinear limit. In particular, the splitting functions [65 – 67] and

Sudakov factors [64] can be systematically derived [61, 62] using soft-collinear effective the-

ory (SCET) [57 – 60]. Below the scale µ, the parton shower should be regarded as simply

a QCD-inspired phenomenological model. For example, a phenomenological shower can

be used to extrapolate into regions of phase space away from the soft-collinear limit if

high-multiplicity fixed-order matrix elements are unavailable, creating partonic final states

that include the correct singularity and symmetry structure of QCD, but lack the full

quantum interference. Similarly, a phenomenological shower can serve as the entry point

to nonperturbative hadronization in a general fragmentation scheme, and in that context,

the shower can and should be tuned to data to reproduce the measured fragmentation

properties seen in experiments.

It is the fact that the parton shower has meaning above and below µ that can be

used to mitigate the unphysical µ dependence, since it implies that the double-logarithmic

dependence of the parton shower is identical to the double-logarithmic dependence of QCD.

This guarantees that partonic calculations with leading-logarithmic improvements will have

no leading µ dependence when interfaced with a parton shower at the scale µ. However,

the challenge of defining µ in this way is that now it is not clear whether the issue of

phase space double-counting will be solved, nor is it obvious that such a definition of µ

will provide a method to combine generic fixed-order calculations with a parton shower,

especially in the presence of infrared divergences. At this point, it is thus worthwhile to

reconsider the various components of figure 1 to distill the essential challenges in combining

fixed-order calculations with parton showers.

2.2 Combining different QCD descriptions

In trying to combine different descriptions of QCD into a coherent Monte Carlo framework,

there are really three definitions of what is meant by “combine” as shown in figure 2: com-

bining different formal expansions, combining formal calculations with phenomenological

models, and combining different phase space algorithms. These definitions of “combine”

are in one-to-one correspondence with three technical problems that arise when trying to

merge fixed-order calculations with parton showers: regulating infrared divergences, cancel-
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Figure 2: The three different meanings of “combine”: 1© Combining different expansions of QCD

in a partonic calculation; 2© combining a partonic calculation with a phenomenological model; and

3© combining a non-Markovian phase space generator with a Markovian generator. By isolating the

issues involved in merging fixed-order calculations with parton showers, GenEvA offers a simple and

generic method to improve Monte Carlo. Note that all these meanings of “combine” respect the

division between calculations on one side and algorithms on the other, and the GenEvA framework

is devised to cleanly separate the calculational and algorithmic issues.

ing unphysical µ dependence, and eliminating double-counting. The power and simplicity

of the GenEvA framework comes from cleanly separating these three issues.

The first meaning of “combine” is to merge different formal expansions of QCD, in our

case a perturbative expansion in αs, with a kinematic expansion that allows resumming

logarithms of some ratio r of energy scales. A successful combination of this form will result

in a partonic calculation |M(µ)|2 that is simultaneously correct to the calculated order in

αs while also including the desired level of logarithmic resummation. While there are formal

procedures to calculate |M(µ)|2 by matching QCD onto SCET [62, 61], there are numerous

correct choices for |M(µ)|2 that satisfy the desired properties at the leading-logarithmic

level. We will also see that the issue of infrared divergences is solved entirely in the context

of a partonic calculation, because one can think of the cancellation of divergences between

loop diagrams and tree diagrams as just another type of formal combination.

We have included an explicit µ dependence in the partonic calculation |M(µ)|2 in antic-

ipation of the second meaning of “combine”, which is to combine a formal QCD calculation

with a phenomenological model based on QCD. Below some scale µ, the phenomenological
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parton shower will be used to fill out phase space and interface with a nonperturbative

hadronization model, but we already saw that this will introduce unphysical αs log2 µ de-

pendence in the final results. However, if we include leading-logarithmic resummation in

the partonic calculation |M(µ)|2, then this µ dependence will cancel by construction. At

first glance, it appears that the partonic calculation now needs to know the details of

the phenomenological shower in order to engineer the αs log2 µ cancellation. Remember

though, that this double-logarithmic µ dependence is a property of QCD and not of a spe-

cific parton shower, so the correct µ dependence can be included in |M(µ)|2 independently

of the details of the shower. The only requirement is that the same formal definition of µ

is used in both the partonic calculation and the phenomenological shower. In practice, the

choice of µ corresponds to the choice of shower evolution variable.

Finally, the third meaning of “combine” has to do with merging different algorith-

mic techniques. We saw that phase space can either be covered by a fixed-multiplicity

non-Markovian algorithm or with a variable-multiplicity Markovian algorithm, and for

computational reasons we may wish to use different algorithms in different regions of phase

space. Because of the problem of double-counting, one needs to merge these two algorithms

in such a way that a given point in phase space is covered once and only once. One option

is to define a phase space cut µ, as mentioned already, and use a non-Markovian algorithm

above that scale µ and a Markovian algorithm below µ. We denote such phase space with

a matching scale as dMC(µ), and an example of an efficient dMC(µ) generator is presented

in the companion paper [1].

Let us return to the traditional approach in eq. (1.1) for creating a fully differential

hadronic cross section, now with the final state multiplicity n made manifest:

dσtrad. =
∑

n

MCµn

(

|Mn|2 dΦn

)

. (2.1)

Here, |Mn|2 is a fixed-order calculation with n final state partons, dΦn is n-body phase

space, and MCµn represents a phenomenological parton shower that starts at the scale

µn. As mentioned already, current approaches to merging fixed-order calculations with

parton showers require either a modification to |Mn|2, to MCµn , or to both, and GenEvA is

no exception. The novelty of GenEvA is that these modifications can be made completely

generic by applying the logic of figure 2.

First, a fixed-order calculation lacks the correct behavior for small r, so we have to

substitute a partonic calculation that includes a proper logarithmic resummation,

1© |Mn|2 → |Mn(µ̃n)|2 ,

where at this point µ̃n is an unspecified infrared scale. Second, to avoid large αs log2 µn

dependence when the phenomenological parton shower is applied, the infrared scale in the

partonic calculation must be the same as the starting scale of the shower,

2© µ̃n → µn .

Finally, the traditional approach to phase space involves two different phase space algo-

rithms, a non-Markovian dΦn generator and a Markovian MCµn generator. For any specific

– 8 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
0

dσ = |M(µ)|2 dMC(µ)

Calculations Algorithms

Figure 3: A schematic summary of the GenEvA master formula. The fully exclusive differential

cross section comes from interfacing a partonic calculation |M(µ)|2 with a phenomenological model

through the use of Monte Carlo space dMC(µ). The matching scale µ allows this interface to be

smooth and defines a clean separation between calculational and algorithmic issues.

phase space point, the partonic calculation is simply a number that is unchanged by the

action of MCµn , so |Mn(µn)|2 can be factored out separately for each n. The quantity
∑

n MCµn(dΦn) involves multiple covering of phase space, since the action of the phe-

nomenological model starting from a phase space point in dΦn will populate regions of

phase space dΦm>n by the splitting of particles. To solve the problem of double-counting

we introduce a µ-aware phase space generator

3© MCµn(dΦn) → dMCn(µn) ,

which cleanly separates phase space populated by the dΦn generator and the subsequent

evolution using the phenomenological model. These three steps lead to the GenEvA master

formula from eq. (1.2)

dσGenEvA =
∑

n

|Mn(µn)|2dMCn(µn) . (2.2)

There are two interesting features of eq. (2.2). First, as summarized in figure 3, this

formula can be interpreted as an explicit separation of calculational issues from algorithmic

issues. |Mn(µn)|2 certainly encodes the challenges of merging together different QCD ex-

pansion schemes into a single partonic cross section. dMCn(µn) is slightly more complicated

because it encodes both algorithmic information as well as the physics of phenomenological

models. However, to the extent to which we (unfairly) regard phenomenological models as

QCD-inspired numerical algorithms, dMCn(µn) encodes the algorithmic challenges of dis-

tributing QCD-like events. Because calculational issues are now separated from algorithmic

ones, the partonic calculations |Mn(µn)|2 can be determined through physics consideration

alone, independently of the details of dMCn(µn).

Second, as summarized in figure 4, the same scale µn appears both in |Mn(µn)|2 and

in dMCn(µn). A potential mismatch as in figure 1 between the calculational scale µ and

the algorithmic scale µ is avoided because these two scales are now forced to be the same

to cancel the αs log2 µ dependence. In this way, all the user needs to know is that full QCD

information as encoded in |M(µ)|2 will be used above µ, and phenomenological models of

QCD (which the user need not specify) will be used below µ. Of course, the precise defini-

tion of µ must always be specified, and in this paper, we will use the invariant mass between

particles to define µ, leaving a discussion of generalizations for the companion paper [1].
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Figure 4: The user’s view of the GenEvA framework. Partonic calculations as defined by |M(µ)|2
are used above a universal scale µ and can be distributed with the GenEvA algorithm [1]. A phe-

nomenological model is used below the scale µ and is implemented using an unspecified algorithm,

usually a parton shower interfaced with a hadronization scheme. Because the same scale µ defines

both the calculational separation and the algorithmic separation, the user is free to choose the best

partonic calculations from physics considerations alone, without having to worry about the details

of the algorithmic implementation.

µ2

dΦ3 dΦ4dΦ2

dΦ4(µ3, µ2)

µ3dΦ3(µ2)

· · ·

Figure 5: The scale-dependent phase space dΦn({µi}i<n). The regions of dΦ3,4 labeled µ2 are

those reached by the phenomenological model acting on dΦ2 with starting scale µ2. The region of

dΦ4 labeled µ3 is reached by the phenomenological model acting on dΦ3 when started at the scale

µ3. Excluding these regions from dΦ3,4 defines dΦ3(µ2) and dΦ4(µ2, µ3). When interfaced with

a phenomenological model, the set of all dΦn({µi}i<n) regions gives a complete covering of phase

space with no double-counting by construction.

In the remainder of this section, we will consider the various elements in eq. (2.2) in

more detail, starting with a more precise definition of the phase space dMC(µ), explaining

how to include additional flexibility in defining more scales like µ, and then discussing

methods to determine the partonic calculation |M(µ)|2.

2.3 A new approach to phase space

As discussed in the previous section, the GenEvA framework requires a phase space gener-

ator dMC(µ) that, by construction, does not introduce double-counting when interfaced
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dMC2(µ2) dMC3(µ3) dMC4(µ4)

...
...

...

· · ·

Figure 6: Definition of “Monte Carlo space” dMCn(µn) as all regions of scale-dependent phase

space dΦn({µi}i<n) that can be reached by the phenomenological model starting from µn.

dMC2(µ2) consists of dΦ2 together with the part of dΦ3,4,... labeled by µ2 in figure 5, dMC3(µ3)

consists of dΦ3(µ2) together with the part of dΦ4,... labeled by µ3 (but excluding that labeled by

µ2), and so on. This way of organizing phase space emphasizes that while partonic calculations are

defined on scale-dependent phase space dΦ(µ), they affect all regions of Monte Carlo space dMC(µ)

through the phenomenological model.

with a phenomenological model for filling out phase space. To be specific, we take the phe-

nomenological model to be a parton shower that takes an n-body configuration Φn in dΦn

and starts showering at some scale µn to produce additional partons. In other words, the

parton shower produces m-body configurations with m ≥ n, where the precise regions of

higher-dimensional phase space that are populated are determined by the choice of starting

scale µn and the details of the parton shower. Calling these regions MCn(µn), we can think

of the parton shower as defining a map

Φn
pheno. model−→ MCn(µn) . (2.3)

To eliminate double-counting, we simply have to exclude those regions from dΦn that

can be reached by acting the shower on dΦi starting from the scale µi for any i < n. As

illustrated in figure 5, the remaining parts of dΦn define phase space with a matching scale

dΦn({µi}i<n).4 Note that dΦn({µi}i<n) is a function of all the lower-dimensional matching

scales {µi}i<n and is independent of the matching scale µn.

Having solved the issue of double-counting, it is now more convenient to directly talk

about “Monte Carlo space” dMCn({µi}i≤n), which is defined as dΦn({µi}i<n) plus the

collection of all relevant regions excluded from dΦm>n, as illustrated in figure 6. More

precisely, dMCn({µi}i≤n) is the image of dΦn({µi}i<n) under the parton shower map in

eq. (2.3). To simplify our notation, we will mostly suppress the implicit dependence on the

scales µi<n and only write dMCn(µn).

4In figure 5, dΦ4(µ2, µ3) strictly speaking only depends on µ3 since the region of dΦ4 mapped out by

µ2 lies completely inside µ3. In general, this need not be the case, see for example figure 11.
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By construction, a covering of phase space with no double-counting is given by the map

nmax
∑

n=2

dΦn({µi}i<n)
pheno. model−→

nmax
∑

n=2

dMCn(µn) , (2.4)

where nmax will be determined by the maximal available number of external particles in

the partonic calculation. As long as the scales µn for n ≤ nmax and the parton shower

satisfy certain mild constraints to guarantee no dead zones, eq. (2.4) also provides a

complete covering of phase space which is one-to-one and onto, i.e. every region of phase

space is covered exactly once:

nmax
∑

n=2

dMCn(µn) →
∞
∑

n=2

dΦn . (2.5)

Making the dependence on nmax explicit, the GenEvA master formula is

dσ =

nmax
∑

n=2

|Mn(µn)|2 dMCn(µn) . (2.6)

A crucial point is that an n-body partonic calculation |Mn(µn)|2 is defined just as a function

of Φn, but the extrapolation to all of dMCn(µn) is provided by the phenomenological

model. In principle, all eq. (2.6) requires is a phase space generator that can generate

scale-dependent phase space dΦ(µ). Such a generator could be built out of existing Monte

Carlo tools by including a phase space veto. Because dΦ(µ) implicitly depends on the

precise choice of phenomenological model, doing so might be nontrivial, but there is no

conceptual difficulty. Once such a generator exists, we can think entirely in the language

of partonic calculations, but still generate fully hadronized events with the aid of QCD

phenomenological models.

2.4 Variable resolution scale

When discussing strategies for calculating the partonic result |M(µ)|2, it will prove very

useful to define a projection map from n-body phase space to m-body phase space

Φn → Φm with m < n . (2.7)

This phase space projection map will be the key to creating our NLO/LO/LL merged

sample. Such a map can be achieved by defining a resolution scale µ̄, which would resolve

more and more partons as the scale is lowered. Note that this scale does not have to

coincide with the scale µ we use to divide up phase space.

As we raise the scale µ̄, the projection map will cluster together two partons once

their “distance” becomes smaller than µ̄. The phase space map given in eq. (2.7) will give

Φn → Φm at the resolution scale µ̄m. As an example, consider the event shown in figure 7,

where at the matching scale µ there are 7 resolved partons. At the scale µ̄5, two pairs of

particles have been clustered together such that the event has 5 resolved partons. Similarly,

at the scales µ̄3 and µ̄2 = ECM, we have 3 and 2 resolved partons, respectively.
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µµ̄5µ̄3µ̄2 = ECM

Figure 7: Phase space with a variable resolution scale. The shaded blobs represent one possible

phase space projection map as in eq. (2.7) based on successive 2 → 1 recombinations. At the

matching scale µ, the event has 7 final state partons. Going from the matching scale µ to the

resolution scale µ̄5 maps a 7-body configuration to a 5-body configuration. Further increasing the

scale to µ̄3 and µ̄2 = ECM yields a 3-body and eventually a 2-body configuration. The ability

to project a given point of phase space to a lower-dimensional phase spaces allows for partonic

calculations |M(µ, µ̄, . . .)|2 that depend on multiple scales {µ}.

There are several such maps available in the literature including the kT algorithm [68,

69] and the momentum mappings often found in dipole showers [70, 24]. In fact, any

recursive cluster-based jet algorithm is an example of such a map, but to be useful, eq. (2.7)

has to respect the symmetry and singularity structure of QCD, which means that the

clustering procedure should respect flavor, and the scale µ̄ should roughly determine the

“soft-collinear distance”. Such maps give a sequence of resolution scales, and in the past,

it has been mainly the ability to obtain such a sequence of scales which has been used

in the literature. An example is the CKKW procedure [23], which uses a flavor-aware

variant of the kT algorithm to identify the scales needed to implement leading-logarithmic

improvements to tree-level calculations. In GenEvA, the actual four-momenta determined

by eq. (2.7) are also important, and we crucially assume that the projection eq. (2.7) returns

a set of on-shell four-momenta, such that partonic calculations can be defined in terms of

|Mn(Φn, µn; Φm, µ̄m; . . .)|2 . (2.8)

In the GenEvA algorithm [1], we will show that we can use the evolution variable of

the parton shower itself as the resolution variable. Thus, the projection in eq. (2.7) will

effectively be the inverse of the parton shower map in eq. (2.3).5 This reversal property of

the projection means that we have a consistent way to not just increase but also decrease

the matching scale at will. This could potentially be very important because it allows one

to raise the value of nmax in eq. (2.6) and thus use additional partonic calculations after

the events have been generated or even passed through a detector simulation. In fact, a

5Strictly speaking, eq. (2.7) will be a pseudo-left-inverse of eq. (2.3), meaning that running the shower

and applying the projection will yield the identity map up to discrete ambiguities.
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reversable projection can be used to define dMC(µ), as any given phase space integration

region dΦn can be mapped to the proper dMCm(µm) region as needed in figure 6. The

presence of a reversable phase space projection is one of the reasons why the GenEvA

algorithm is efficient and versatile, but this reversibility property is not strictly needed for

the GenEvA framework discussed here.

2.5 Strategy for partonic calculations

In the language of eq. (1.2), the strategy to systematically improve Monte Carlo is simply

to eliminate phenomenological models by pushing the scale µ as low as possible (ideally

to ΛQCD) with improved QCD partonic calculations |M(µ)|2. Of course, one would also

like to refine and tune phenomenological models based on experimental and theoretical

input, but that is not the focus of the present work, where we are concerned primarily with

improving the perturbative description of QCD.

How does one determine a partonic calculation |M(µ)|2? As discussed, the choice can

be made by physics considerations alone without worrying about algorithmic implications,6

and the physics goal is to determine an expression for |M(µ)|2 that is formally correct both

in a perturbative expansion in αs and in a kinematic expansion about r, where r denotes the

ratio of two kinematic scales, such as the invariant mass between two partons compared to

the center-of-mass energy. The details of how to define partonic calculations are discussed

in subsequent sections, and we give just a schematic overview here.

As is well known, an expansion to fixed order in αs does not yield a good description

of perturbative QCD over all of phase space. The presence of double-logarithmic terms

(αs log2 r)n at each order in the perturbative expansion invalidates the fixed-order

expansion for small values of r. These double-logarithmic terms can be resumed to all

orders in perturbation theory by doing a soft-collinear expansion of QCD. In this paper we

will only work to leading-logarithmic order, leaving a treatment of subleading logarithms

for future work.

The most naive partonic calculation is one that completely avoids the issue of loga-

rithmic resummation and only uses tree-level (LO) matrix elements

|MLO
n (µ)|2 ≃ |Mtree

n |2 . (2.9)

Note that the infrared divergences in the tree-level diagrams are regulated because phase

space has a matching scale µ that imposes a phase space restriction.

Because of the double-logarithmic sensitivity to the scale µ from running the phe-

nomenological model, we want to supplement |MLO(µ)|2 with the correct leading-

logarithmic (LL) µ dependence. As observed by CKKW [23], this can be accomplished

by multiplying the tree-level diagram with a µ-dependent Sudakov factor ∆,

|MLO/LL
n (µ)|2 ≃ |Mtree

n |2 ∆(ECM, µ) . (2.10)

6In practice, the availability of fast numerical methods to evaluate |M(µ)|2 might affect the precise form

of the partonic calculation, especially in the presence of loop expressions.
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Because the Sudakov factor can be formally expanded as ∆ = 1 + O(αs), this LO/LL

partonic cross section is simultaneously correct to leading order in an αs expansion and to

leading-logarithmic order in the soft-collinear limit.

The story becomes more complicated at next-to-leading order (NLO) because of the

need to cancel infrared divergences between n-body virtual and (n + 1)-body real-emission

diagrams. Though in practice, one typically uses Catani-Seymour subtractions [71, 72] to

calculate NLO observables, for the moment, we will use a slicing method [73 – 78], which

is conceptually simpler. Schematically, one writes

|MNLO
n (µ)|2 ≃ |Mreal

n |2 + |Mvirtual
n |2 +

∫

µ
|Mreal

n+1|2 , (2.11)

where the integral
∫

µ represents slicing part of the (n + 1)-body real-emission phase space

to cancel the infrared divergences in the n-body virtual diagrams. Any divergences in the

n-body real emission are regulated by the matching scale µ as in the tree-level case, but

the effect of those divergences can be used again in a slicing scheme to cancel infrared

divergences in the (n − 1)-body virtual diagrams.

Adding leading-logarithmic information to the NLO calculation is much more involved.

A naive approach is simply incorrect,

|MNLO/LL
n (µ)|2 6= |MNLO

n (µ)|2 ∆(ECM, µ) , (2.12)

because the O(αs) pieces in the Sudakov factor change the O(αs) behavior of the fixed-

order calculation. An achievement of MC@NLO [44] was to figure out an expression for

|MNLO/LL(µ)|2 that simultaneously has NLO and LL accuracy. In ref. [44], a specific algo-

rithmic method to implement |MNLO/LL(µ)|2 was used that generated events with some-

times negative weights, but in the context of GenEvA the same |MNLO/LL(µ)|2 expression

can be used to generate NLO/LL accurate events with manifestly positive weights.

At this point, GenEvA is simply reproducing known results from PS/ME merg-

ing (LO/LL) and PS/NLO merging (NLO/LL) in the language of partonic calculations

|M(µ)|2. The advantage of this language is that it makes it straightforward to merge

these two results into a partonic calculation that has combined NLO/LO/LL accuracy.

As already mentioned in section 2.4, and as we will explain in more detail in section 3.6,

one can define a scale µ̄m > µ at which only m < n partons are resolved. This can be

achieved using the phase space projection map of eq. (2.7). If one has LO/LL information

for n partons, and additional NLO/LL information for m partons,7 one can supplement

the LO/LL partonic cross section with this higher-order information, using

|MNLO/LO/LL
n (µ)|2 = |MLO/LL

n (µ)|2 |MNLO/LL
m (µ̄m)|2

|MLO/LL
m (µ̄m)|2

. (2.13)

This result describes NLO observables correct to NLO, LO observables correct to LO, all

with the correct LL behavior.

7Here, NLO/LL information for m partons means that one has performed an (m − 1)-body one-loop

calculation.
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dσ = |M(µ)|2 dMC(µ)

GenEvA Strategy
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GenEvA Program
concrete implementation
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Figure 8: The four different meanings of “GenEvA”. The GenEvA framework is an umbrella for

the idea of distributing partonic calculations with a matching scale, |M(µ)|2, across phase space

with a matching scale, dMC(µ). The GenEvA strategy asserts that different QCD expansions can

be merged into a single partonic quantity |M(µ)|2. The GenEvA algorithm is a method for using

a parton shower as a phase space generator. The GenEvA program is a concrete implementation of

the GenEvA framework employing the GenEvA algorithm.

Though we do not demonstrate an NNLO/NLO/LO/NLL/LL merged sample in the

present work, whether or not such a sample can be built in principle only depends on

whether it is possible to derive an expression for |M(µ)|2 that simultaneously allows NiLO

observables to be correct to NiLO and NjLL observables to be correct to NjLL. Of course,

since we will interface with a phenomenological model that might not have the correct NLL

behavior, we now have to push µ as low as possible to make sure that our NiLO/NjLL

calculation describes as much of phase space as possible. Using the language of partonic

calculations, we see that how far Monte Carlo can be improved on the perturbative side is

in principle a pencil-and-paper question that can be separated from algorithmic issues.

2.6 Summary of GenEvA

Just as “fixed-order calculation” and “parton shower” referred to various concepts, GenEvA

itself refers to four different concepts, summarized in figure 8. GenEvA is:

1. A Monte Carlo framework based on the idea of generating events according to

dσ = |M(µ)|2 dMC(µ) (2.14)

by distributing a generic partonic calculation with a matching scale, |M(µ)|2, using

a generic phase space generator with a matching scale, dMC(µ). This framework

could be implemented using traditional Monte Carlo tools without ever referencing

the GenEvA phase space algorithm.

2. A strategy for improving Monte Carlo based on merging different QCD expansions to

determine the best partonic calculations |M(µ)|2. This strategy will be the subject of

– 16 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
0

ECM

Partonic

Showering

Hadronization
ΛIR

µ Variable Phase Space Cut

A
n
a
l
y
t
ic

S
u
d
a
k
o
v

F
a
c
t
o
r

GenEvA

Algorithm

GenEvA

Algorithm

Traditional
Showering &
Hadronization Traditional

Hadronization

Fixed Phase Space Cut

Numeric

Sudakov

































































































ECM

Partonic

Showering

Hadronization
ΛIR

µ
Analytic

Sudakov

(w/ Internal Shower)

Figure 9: The three regimes of event generation. Left panel: The GenEvA algorithm [1] could

be used only in the partonic regime, with the showering regime covered by a traditional, already

tuned, showering program. Right panel: Alternatively, both partonic and showering regimes can

be covered by the GenEvA algorithm using its internal parton shower. In this case the matching

scale between the partonic and showering regimes remains freely adjustable through the reversable

phase space projection. While these two approaches differ in how Sudakov factors are calculated,

they both give results that are accurate to leading-logarithmic order.

the remaining sections and yields a formula for an NLO/LO/LL merged calculation

and should be generalizable to NNLO or NLL.

3. An algorithm for generating phase space with a variable matching scale, dMC(µ),

by analytically reweighting a parton shower to fixed-multiplicity phase space. This

algorithm is detailed in ref. [1].

4. A computer program that gives a concrete implementation of the GenEvA framework

by using the GenEvA algorithm. An alpha version of this software is available from the

authors upon request, and is used here to show the results of the NLO/LO/LL cal-

culation.

We emphasize that while the GenEvA algorithm for generating phase space is quite novel,

the important physics behind the GenEvA framework is captured not by the phase space

integration dMC(µ) but by the GenEvA strategy to define the partonic calculation |M(µ)|2.
Though we need a phase space generator with a variable matching scale in order to create

an NLO/LO/LL merged sample, the physics behind this merging comes from finding a

suitable form of |M(µ)|2.
To summarize the complete GenEvA approach to Monte Carlo, it is instructive to sep-

arate the phenomenological model into a parton shower component and a hadronization

component. If we now divide event generation into three regimes as in figure 9—partonic,

showering, and hadronization — then the GenEvA framework improves our ability to de-

scribe the partonic regime through improved partonic calculations |M(µ)|2. The showering

regime can either be described by a traditional showering program such as Pythia [9, 10] or

Herwig [11, 14, 15] or by the internal parton shower used in the GenEvA algorithm.8 Regard-

less of which method is used, there will be no leading-logarithmic µ dependence in the event

8As we discuss more in the companion paper [1], the reason to use a traditional algorithm is that they have
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Figure 10: Structure of the toy theory. Starting at the scale x = 1, the system can generate

“radiation” at scales x1, x2, . . ., with the xi values always decreasing. At the scale xcut, the

perturbative radiation matches onto a “hadronization” scheme.

generation as long as |M(µ)|2 contains the correct Sudakov factors and the same definition

of µ is used in the partonic and showering regimes. Finally, the hadronization regime uses

some model of the strong interactions to hadronize the obtained partons into the hadrons

observed in the collider, and GenEvA inherits the same smooth showering/hadronization

interface as traditional frameworks.

3. GenEvA in a toy example

To see how the GenEvA framework works in practice, it is instructive to first consider a

toy example that includes all of the issues involved in constructing partonic calculations

|M(µ)|2, without the technical complications introduced by full QCD. In particular, the

toy theory will only have a single unambiguous scale. In actual QCD, the scale at which

an emission occurs will be ambiguous, both because of the ambiguity in the choice of

evolution variable and the ambiguity of how to pair together daughter particles to form

mother particles. We will see how to deal with these additional complications in section 4.

To build the analogy with QCD, we need an example theory with both analytic cross-

section information as well as a separate phenomenological description. We will use a

slightly modified version of the toy example introduced in ref. [44]. After reviewing the toy

theory, we will describe “Monte Carlo space” dMC(µ) and the kinds of partonic calculations

|M(µ)|2 that can be distributed across Monte Carlo space.

3.1 Review of toy theory

Consider a system that can radiate off “photons” as in figure 10. After emission of a

already been tuned to data, though there are some technical issues regarding evolution variables that would

have to be overcome to use this option. If the GenEvA algorithm is used in the showering regime, then the

user gains the freedom to adjust the scale µ used in the partonic calculations even after detector simulation.
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photon, the system has energy x left for further emissions with

0 ≤ x < xstart ≤ 1 , (3.1)

where xstart was the energy of the system before the emission (with xstart = 1 initially),

so the energy of the radiated photon is xstart − x.9 The different phase space integration

ranges for n emissions are given by

dΦ0 = 1 , dΦ1 = dx1 , dΦ2 = dx1 dx2 θ(x1 > x2) , . . . ,

dΦn = dx1

n
∏

i=2

dxi θ(xi−1 > xi) ,
(3.2)

and the restriction 0 ≤ xi ≤ 1 is implied.

The Born “cross section” corresponds to no emissions at zeroth order in perturbation

theory. At first order in perturbation theory, there is a contribution to the cross section

from real and virtual photon emissions. We define

dσB

dx
= B δ(x) ,

dσV

dx
= α

(

B

2ǫ
+ V

)

δ(x) ,
dσR

dx
= αB

R(x)

x1+2ǫ
, (3.3)

where we are doing a perturbative expansion in α, and ǫ is the dimensional regularization

parameter in d = 1 − 2ǫ dimensions. We need

lim
x→0

R(x) = 1 , (3.4)

such that the integral over the real contribution cancels the infrared divergence in the

virtual contribution,

∫ 1

0
dx

R(x)

x1+2ǫ
=

∫ 1

0
dx

1

x1+2ǫ
+

∫ 1

0
dx

R(x) − 1

x
= − 1

2ǫ
+ finite , (3.5)

yielding the total cross section to O(α)

σNLO = B + αV + αB

∫ 1

0
dx

R(x) − 1

x
. (3.6)

Next, we define a function Q(x) which plays the role of the splitting function in

QCD and reproduces the full radiation in the singular limit x → 0. That is, from

eq. (3.4) we require

lim
x→0

Q(x) = 1 , (3.7)

such that

lim
x→0

R(x) − Q(x)

x
= finite . (3.8)

9Unlike ref. [44], we take x to be the energy of the system available for radiation, rather than the energy

of the emitted photon. Thus, x is continuously decreasing and plays the role of a parton shower evolution

variable. Note that this means that this model has the somewhat unusual property of having singularities

if the photons radiate with maximum energy, rather than with minimum energy.
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The simplest choice would be Q(x) = 1. In general, a nontrivial dependence on x is

possible, in which case we require Q(x) to be positive between x = 0 and x = 1. The

function Q(x) can be used to define

∆Q(x1, x2) = exp

[

−α

∫ x1

x2

dx
Q(x)

x

]

, (3.9)

which plays the role of the Sudakov factor, and which we will often just call ∆ for simplic-

ity. Finally, the splitting function together with the Sudakov factor can be used to define

a parton shower with the differential probability to branch (emit a photon) at x given by

dP(x) = α
Q(x)

x
∆(xstart, x) dx . (3.10)

As before, xstart is the energy of the system prior to the branching. We also define a lower

cutoff xcut on the parton shower, which corresponds to the scale at which a QCD parton

shower would be matched onto a hadronization model. In the following, the parton shower

defined by eq. (3.10) will serve as the phenomenological model in our toy theory.

3.2 Phase space with a matching scale

As discussed in section 2.3, to avoid any double-counting between the parton shower started

from a system with n emissions and one with m > n emissions, we want to define phase

space in the presence of matching scales. Because we are working with a single-scale

system, it is straightforward to amend the ordinary phase space dΦn in eq. (3.2) with a set

of matching scales {µi}i<n. We have

dΦn({µi}i<n) = dx1 θ(x1 > µ0)
n
∏

i=2

dxi θ(xi−1 > xi) θ(xi > µi−1) , (3.11)

where the restriction 0 ≤ xi ≤ 1 is again implied. An illustration of eq. (3.11) for n ≤ 2

is shown in figure 11. Before going on to explain eq. (3.11) in more detail, we want to

highlight a few main points:

1. For each n, the scale µn is the scale at which we start the “parton shower” when acting

on n-emission phase space dΦn. In general, µn ≡ µn(Φn) can be a function of Φn ≡
{xi}i≤n. This can lead to some counter-intuitive but still well-defined situations. The

example shown in figure 11 has a seemingly pathological situation where µ1(x1) < µ0

for certain values of x1, but this is perfectly consistent and even potentially useful.

The only restriction on the functional form of µn(Φn) for eq. (3.11) to make sense is

that µn(Φn) ≤ xn.

2. In accordance with our general discussion in section 2.3, the restriction xi > µi−1

in eq. (3.11) cuts out the region of dΦn for any n ≥ i that gets populated by the

parton shower when acting on dΦi−1, thus guaranteeing that there is no phase space

double-counting.
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Figure 11: The scale-dependent phase space dΦn({µi}i<n) in the toy theory. The scale µ0 is a

fixed number, whereas µ1 ≡ µ1(x1) can be a function of x1. dΦ1(µ0) is given by x1 > µ0, and

dΦ2(µ0, µ1) is given by x1 > µ0 and µ1(x1) < x2 < x1.

3. If we have only calculations for up to nmax emissions, then to avoid dead zones in

phase space, we have to start the parton shower at µnmax
(Φnmax

) = xnmax
when

acting on the nmax-emission contribution, such that dΦn for n > nmax is completely

covered by the parton shower. The easiest way to get full phase space coverage with

no dead zones is to simply use a single fixed matching scale µ, with µn(Φn) = µ

for n < nmax and µnmax
(Φnmax

) = xnmax
. This also avoids some of the seeming

pathologies mentioned above.

To explain eq. (3.11) in more detail, we take a closer look at how the toy parton shower

works. Let MCx1,x2,...(x) denote an event for which emissions have occurred at x1, x2, . . .,

and the system has energy x left to radiate. An event in its initial state is denoted by

MC(1), which means that no photons have been emitted, and the total energy available for

radiation is x = 1. The event then evolves according to the parton shower eq. (3.10), giving

MC(1) → ∆(1, xcut)MC(xcut) +

∫ 1

xcut

dx1

[

α
Q(x1)

x1
∆(1, x1)

]

MCx1
(x1)

→ ∆(1, xcut)MC(xcut) +

∫ 1

xcut

dx1

[

α
Q(x1)

x1
∆(1, x1)

]

∆(x1, xcut)MCx1
(xcut)

+

∫ 1

xcut

dx1

∫ x1

xcut

dx2

[

α
Q(x1)

x1
∆(1, x1)

][

α
Q(x2)

x2
∆(x1, x2)

]

MCx1,x2
(x2)

→ · · · . (3.12)

The first term denotes the possibility that no emissions happen down to the “hadronization

scale” xcut, which occurs with the no-branching probability ∆(1, xcut) and leaves an event
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dMC0(µ0) dMC1(µ1) dMC2(µ2) · · ·

...
...

...

Figure 12: Definition of “Monte Carlo space” dMCn(µn) in the toy theory, which is obtained by

collecting the various parts of dΦn in figure 11.

with energy xcut left for radiation. The second term denotes the possibility that exactly

one emission happens above the scale xcut and so on. The Sudakov factors are defined in

such a way that the total probability is conserved,

∫ 1

xcut

dxα
Q(x)

x
∆(1, x) + ∆(1, xcut) = 1 , (3.13)

so if we start with some number of events MC(1), the number of events after showering

will still be the same.

Now imagine running the parton shower starting at the scale µn(Φn) on an event for

which n emissions have occurred at Φn = {x1, . . . , xn}. In this case

MCx1,...,xn(µn) → ∆(µn, xcut)MCx1,...,xn(xcut)

+

∫ µn

xcut

dxn+1

[

α
Q(xn+1)

xn+1
∆(µn, xn+1)

]

MCx1,...,xn,xn+1
(xn+1)

→ · · · . (3.14)

By assumption, the emissions are ordered with xn+1 < xn, so for eq. (3.14) to be consistent,

we need to choose µn(Φn) ≤ xn. If in addition we consider an (n + 1)-emission event

MCx1,...,xn,xn+1
(µn+1), then to avoid double-counting with the n-emission event, we have

to restrict the range of xn+1 to xn+1 > µn. Similarly, considering the effect of all of the 0-

through n-emission samples, to avoid double-counting regions of phase space when running

the parton shower, we always need to take xi > µi−1, as anticipated in eq. (3.11).

Putting together the phase space restriction from eq. (3.11) with the parton shower

evolution of eq. (3.12), we can now define differential “Monte Carlo space” dMCn(µn) as
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the result of running the parton shower on n-emission phase space dΦ({µi}i<n):

dMCn({µi}i≤n) = dΦn({µi}i<n)

{

∆(µn, xcut)

+ dxn+1 θ(µn > xn+1 > xcut)

[

α
Q(xn+1)

xn+1
∆(µn, xn+1)

]

∆(xn+1, xcut)

+ dxn+1 dxn+2 θ(µn > xn+1 > xn+2 > xcut)

[

α
Q(xn+1)

xn+1
∆(µn, xn+1)

]

×
[

α
Q(xn+2)

xn+2
∆(xn+1, xn+2)

]

∆(xn+2, xcut)

+ · · ·
}

, (3.15)

where the restriction 0 ≤ xi ≤ 1 is again implied. Note that the Monte-Carlo space

dMCn({µi}i≤n) has variable multiplicity. An illustration of eq. (3.15) for n ≤ 2 is shown

in figure 12.

With the appropriate choice of µn, as discussed above,
nmax
∑

n=0

dMCn(µn) →
∞
∑

n=0

dΦn(xcut) (3.16)

gives a covering of phase space with no dead zones and no double-counting. Here, dΦn(xcut)

represents running the hadronization model on the partons at the scale xcut. The arrow in-

dicates that dMCn(µn) includes additional weight information from the splitting functions

and Sudakov factors.

3.3 The master formula

A compact master formula for the fully differential cross section coming from our as-of-yet

undefined partonic calculation interfaced with the parton shower is given in analogy

with eq. (2.6):

dσ =

nmax
∑

n=0

|Mn(µn)|2 dMCn(µn) . (3.17)

As already mentioned, |Mn(µn)|2 is a function of Φn. More generally, |Mn(µn)|2 can also

depend on the scales {µi}i<n that are implicit in dMCn(µn).

It is at this point that the different concepts behind the parton shower come into play.

As an instructive exercise, imagine we only know the Born cross section B and the splitting

function Q(x). In that case, the best approximation to the differential cross section we can

write down is

dσ = |M0(µ0)|2 dMC0(µ0) with µ0 = 1 , |M0(µ0 = 1)|2 = B . (3.18)

However, there is an entirely equivalent description of the same physics in terms of the

differential cross section

dσ = |M0(µ0)|2 dMC0(µ0) + |M1(µ1)|2 dMC1(µ1) , (3.19)

where we now have to choose µ1 = x1 to avoid dead zones, and the partonic calculations

are defined as
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|M0(µ0)|2 x|M1(x)|2
Parton Shower (LL) B ∆Q(1, µ0) αB Q(x)∆Q(1, x)

Tree-Level (LO) B αB R(x)

Sudakov-Improved (LO/LL) B ∆Q(1, µ0) αB R(x)∆Q(1, x)

NLO Slicing (NLO) B̃(µ0) αB R(x)

NLO Subtraction (NLO/LL) B̄(µ0)∆Q(1, µ0) αB (R(x) − Q(x)) + αB̄(µ0)Q(x)∆Q(1, x)

NLO Elegant (NLO/LL) σNLO ∆T (1, µ0) αB R(x)∆T (1, x)

Table 1: Summary of the various possible one-emission partonic calculations in the toy theory.

At the one-emission level, all of the theory information can be summarized by a zero-emission

calculation |M0(µ0)|2 with a matching scale µ0 and a one-emission calculation |M1(x)|2 with a

matching scale µ1 = x. The definitions of the samples and symbols are given in the text.

Parton shower (LL):

|M0(µ0)|2 = B ∆(1, µ0) ,

|M1(x1)|2 = αB
Q(x1)

x1
∆(1, x1) . (3.20)

In eq. (3.18), we would say that the boundary between the partonic calculation and the

parton shower is µ = 1, whereas in eq. (3.20), we would say that the boundary is some

scale µ = µ0. This is an example of the ambiguity of the parton shower having a meaning

above or below the scale µ, as discussed in figure 2. This flexibility in changing the value

of µ is a feature and not a bug, and it comes from the fact that the parton shower is

both a phenomenological model based on QCD and a well-defined expansion of QCD. The

only difference between the two descriptions are the words and perhaps algorithms we use

above and below µ. But the freedom to incorporate a Sudakov factor ∆ into a partonic

calculation |M(µ)|2 as needed is what makes it possible to define partonic calculations that

include leading-logarithmic resummation.

3.4 Partonic matrix elements for the first emission

With the toy master formula eq. (3.17) in hand, we simply need to define the best partonic

calculations |M(µ)|2 we can with the available information from the toy theory. Apart from

issues of Monte Carlo efficiency, this definition can be dictated by physics considerations

alone, as the GenEvA framework can distribute any |M(µ)|2 across dMC(µ). We will start in

this subsection by only considering the first emission in our toy theory, writing for simplicity

x ≡ x1. The generalization to multiple emission will be given in the next subsection.

Keeping in mind the freedom offered by eq. (3.19), we can define everything in terms of

|M0(µ0)|2 and |M1(µ1 = x)|2 . (3.21)

A summary of the partonic calculations in this subsection is given in table 1.

The most naive use of the analytic cross section information from eq. (3.3) is to choose
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Tree level (LO):

|M0(µ0)|2 = B ,

|M1(x)|2 = αB
R(x)

x
. (3.22)

The total and one-emission cross sections resulting from eq. (3.22) are10

σ = B + αB

∫ 1

µ0

dx
R(x)

x
,

dσ

dx
= αB

1

x

{

R(x) for x > µ0

Q(x)∆(µ0, x) for x < µ0 ,
(3.23)

which is what one would obtain if events from a tree-level event generator were passed to

a parton shower program.11

The main problem with the choice in eq. (3.22) is that it does not sum the leading-

logarithmic contributions, which although technically of higher order in perturbation the-

ory, can be numerically very important. This leads to the logarithmic dependence on the

unphysical matching scale µ0 in both σ and dσ/dx in eq. (3.23). The reason is of course

that since the parton shower does include this resummation, it has logarithmic dependence

on the starting scale µ0. Thus, if the tree-level results are combined with the parton shower

using eq. (3.17), we are left with this logarithmic dependence on µ0 in eq. (3.23).

To improve the situation, we can resum the leading logarithms in the partonic calcu-

lation by supplementing the naive tree-level result with Sudakov factors:

Sudakov-improved (LO/LL):

|M0(µ0)|2 = B ∆(1, µ0) ,

|M1(x)|2 = αB
R(x)

x
∆(1, x) . (3.24)

At leading order in α, this result is identical to the tree-level result eq. (3.22). The resulting

total and one-emission cross sections are now given by

σ = B + αB

∫ 1

µ0

dx
R(x) − Q(x)

x
∆(1, x) ,

dσ

dx
= αB

1

x

{

R(x)∆(1, x) for x > µ0

Q(x)∆(1, µ0)∆(µ0, x) for x < µ0 .
(3.25)

The factor of ∆(1, µ0) in dσ/dx for x < µ0 comes from |M0(µ0)|2 and cancels the µ0

dependence in ∆(µ0, x), which is generated by the parton shower. Furthermore, since we

10In what follows, dσ/dx always refers to the inclusive differential cross section obtained by integrating

over all values of xi with i ≥ 2.
11Actually, eq. (3.22) is slightly better than what one would get by blindly running a tree-level event

generator through a parton shower program, because implicit in the definition of |M0(µ0)|
2 is that the

parton shower will run from µ0 to avoid double-counting. Out of the box, an ordinary parton shower program

would start the parton shower at x = 1 for the 0-emission piece, which would lead to double-counting.
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know from eq. (3.8) that (R(x) − Q(x))/x is finite as x → 0, the logarithmic dependence

on µ0 in the total cross section cancels, too.

Since eq. (3.25) does not exhibit leading-logarithmic dependence on the matching

scale µ0, eq. (3.24) provides a well-behaved merging between matrix elements and the

parton shower. This result is consistent with the observation made in ref. [23] that matrix

element results need to be supplemented with Sudakov factors to allow for a merging with

parton shower algorithms. What is important, however, is that we did not need a special

algorithm to implement eq. (3.24), because this is just a choice of what partonic matrix

elements to use in the master formula eq. (3.17). Including the correct Sudakov factors

is required by physics considerations alone and, for example, has nothing to do with the

fact that the GenEvA algorithm happens to have an efficient mechanism to implement this

LO/LL merged sample.

The total and one-emission cross sections in eqs. (3.23) and (3.25) are correct to O(1)

and O(α), respectively, which is of course because we only used tree-level information so far.

To also get the total cross section correct at O(α) (NLO) we need to improve the partonic

calculation by including the virtual corrections to the zero-emission cross section, given

by dσV /dx in eq. (3.3). There are numerous strategies one could consider. If we do not

wish to reproduce the leading-logarithmic resummation, and only want to get observables

accurate to NLO, then we can implement a naive slicing scheme [73 – 78]:

NLO slicing (NLO):

|M0(µ0)|2 = B̃(µ0) ,

|M1(x)|2 = αB
R(x)

x
, (3.26)

where

B̃(µ0) = B + αV + αB lim
ǫ→0

[

1

2ǫ
+

∫ µ0

0
dx

R(x)

x1+2ǫ

]

= B + αV + αB

∫ µ0

0
dx

R(x) − 1

x
− αB

∫ 1

µ0

dx
1

x
. (3.27)

The cross sections following from eq. (3.26) are

σ = B̃(µ0) + αB

∫ 1

µ0

dx
R(x)

x
= B + αV + αB

∫ 1

0
dx

R(x) − 1

x
= σNLO ,

dσ

dx
= α

1

x

{

B R(x) for x > µ0

B̃(µ0)Q(x)∆(µ0, x) for x < µ0 .
(3.28)

The total cross section now equals the correct NLO cross section σNLO from eq. (3.6) and has

no µ0 dependence. Furthermore, all observables are accurate to NLO in the µ0 → 0 limit.

However, as in the tree-level result eq. (3.22), the leading logarithmic dependence is not

resummed, meaning that the one-emission cross section dσ/dx does not have the correct Su-

dakov suppression for small x and has large µ0 dependence from both B̃(µ0) and ∆(µ0, x).
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To include the resummation, Sudakov factors must be included in the partonic calcu-

lation in such a way that all observables are still accurate to NLO when they are expanded

in α. This can be achieved using a subtraction method similar to the one proposed by

Frixione and Webber in MC@NLO [44]. For the purpose of this discussion, we do not

need to know the actual algorithm used in that paper to generate their results, only the

corresponding partonic calculation itself:

NLO subtraction (NLO/LL):

|M0(µ0)|2 = B̄(µ0)∆Q(1, µ0) ,

|M1(x, µ0)|2 = αB
R(x) − Q(x)

x
+ αB̄(µ0)

Q(x)

x
∆Q(1, x) , (3.29)

where we made the dependence of ∆ on Q(x) explicit, and we defined

B̄(µ0) = B̃(µ0) + αB

∫ 1

µ0

dx
Q(x)

x

= B + αV + αB

∫ µ0

0
dx

R(x) − Q(x)

x
− αB

∫ 1

0
dx

1 − Q(x)

x
. (3.30)

Note that we have used the fact that the one-emission piece can in general depend on µ0.

The cross sections predicted by the substraction method in eq. (3.29) are

σ = B̄(µ0) + αB

∫ 1

µ0

dx
R(x) − Q(x)

x
= σNLO ,

dσ

dx
= α

1

x

{

B R(x) − Q(x)[B − B̄(µ0)∆Q(1, x)] for x > µ0

B̄(µ0)Q(x)∆Q(1, µ0)∆Q(µ0, x) for x < µ0 .
(3.31)

By expanding the above expressions to O(α), one can easily show that the predictions

of the subtraction method are equal at NLO to the predictions of the slicing method in

eq. (3.28). Furthermore, in addition to producing the correct NLO total cross section,

the one-emission cross section in the subtraction method has no leading-logarithmic µ0

dependence and exhibits the correct Sudakov suppression for small x.

In ref. [44], the form of eq. (3.29) was selected mainly for its algorithmic simplicity

and the lack of explicit ǫ dependence. The important difference is that in ref. [44] each

of the two terms in |M1(x, µ0)|2 is generated by a separate event sample. This can be

inefficient and lead to events with negative weights, since in general, the relative size

of the two terms can be very different, and the first term can also become negative. In

contrast, in our approach, the form of |M1(x, µ0)|2 in eq. (3.29) is just another choice of

a partonic calculation, so it can be used in the master formula eq. (3.17) to generate a

single, positive-weight event sample.

Although we could in principle use eq. (3.29) in our approach, it still has some draw-

backs. First, due to the rather complicated structure of eqs. (3.29) and (3.30), they are

tedious to generalize to more emissions or higher orders in α. Second, since |M1(x, µ0)|2
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depends on the subtraction function Q(x), it is in general not positive definite, and for

pathological choices of Q(x) can lead to negative cross sections.12

However, there is no deep conceptual reason why subtractions must be used to generate

Monte Carlo. Indeed, there are many different ways to get results that are accurate at NLO

after expanding in α, that have no leading-logarithmic µ0 dependence, and that have the

correct Sudakov suppression in the small x limit. One particularly elegant method proposed

by Nason in ref. [46] in a slightly different context is

NLO elegant (NLO/LL):

|M0(µ0)|2 = σNLO ∆T (1, µ0) ,

|M1(x)|2 = ασNLO
T (x)

x
∆T (1, x) , (3.32)

where σNLO is the total NLO cross section from eq. (3.6), T (x) is an effective “splitting func-

tion”

T (x) =
B

σNLO
R(x) , (3.33)

and ∆T is the Sudakov factor obtained from T (x) in analogy to eq. (3.9). The cross sections

are now

σ = σNLO

[

∆T (1, µ0) +

∫ 1

µ0

dxα
T (x)

x
∆T (1, x)

]

= σNLO ,

dσ

dx
= α σNLO

1

x

{

T (x)∆T (1, x) for x > µ0

Q(x)∆T (1, µ0)∆Q(µ0, x) for x < µ0 .
(3.34)

As in the subtraction method, the total cross section is identical to the NLO result, and the

one-emission cross section has the correct Sudakov suppression with no leading logarithmic

µ0 dependence. Note that the latter again relies on the fact that R(x) and Q(x) have the

same singularities for x → 0, so ∆T and ∆Q resum the same leading logarithms.

The form of eq. (3.32) is identical to the merged LO/LL example of eq. (3.24) by

replacing Q(x) → T (x) and B → σNLO. The nice feature of eq. (3.32) is that it is not only

conceptually simple, but it also uses only functions that are completely well defined in an

NLO calculation without ever needing to introduce an ad-hoc subtraction function. It is

also clear from the above expressions that the cross sections are always guaranteed to be

positive. In section 4, we show how to generalize this method to the realistic case of QCD.

On the other hand, there is also no reason why subtractions could not be used in GenEvA

if a subtraction method is more convenient for theoretical or numerical reasons.

3.5 Multiple emissions

The results from the previous subsection can be extended straightforwardly to multiple

emissions in the partonic regime. At tree level, the partonic cross sections are given by

12Of course, for any reasonable choice of Q(x), eq. (3.29) will lead to a positive weight NLO/LL event

sample. Pathologies occur when, say, R(x) − Q(x) ∼ O(α−1).
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Tree level (LO):

|MLO
n (µn)|2 =

αnf tree
n (x1, x2, . . . , xn)

x1x2 · · · xn
, (3.35)

where the symbol f tree
n represents an ordinary tree-level calculation in the toy theory

with the α dependence and xi singularities made manifest. For example, f tree
0 = B and

f tree
1 (x1) = BR(x1). We assume that in the singular regions of phase space

lim
xn→0

f tree
n (x1, . . . , xn−1, xn) − f tree

n−1(x1, . . . , xn−1)Q(xn)

xn
= finite , (3.36)

the analog of which is indeed true in the collinear limit of QCD as long as Q(x) is generalized

to include flavor information.

As discussed before, the tree-level results do not resum the leading-logarithmic behav-

ior, which can be fixed by including Sudakov factors appropriately:

Sudakov-improved (LO/LL):

|MLO/LL
n (µn)|2 =

αnf tree
n (x1, x2, . . . , xn)

x1x2 · · · xn
∆Q(1, x1)∆Q(x1, x2) · · ·∆Q(xn, µn) . (3.37)

This is precisely the result that was advocated in ref. [23] in order to merge matrix elements

and parton showers.13 To see that eq. (3.37) is well behaved, note that the difference across

the boundary xn = µn−1 is14

lim
ε→0

(

dnσ

dx1 · · · dxn

∣

∣

∣

∣

xn=µn−1+ε

− dnσ

dx1 · · · dxn

∣

∣

∣

∣

xn=µn−1−ε

)

= αn f tree
n (x1, . . . , xn−1, xn) − f tree

n−1(x1, . . . , xn−1)Q(xn)

x1 · · · xn−1xn
∆Q(1, xn)

∣

∣

∣

∣

xn=µn−1

+ O(αn+1) ,

(3.38)

which has no large logarithmic dependence on µn−1, assuming eq. (3.36) holds.

As the example most relevant for creating our NLO/LO/LL merged sample, we finally

consider the combination of the NLO results with higher-multiplicity tree-level matrix

elements. This will give a partonic calculation that reproduces the exact NLO results, but

also uses the full tree-level quantum interference for multiple emissions. Using the previous

definitions of σNLO and T (x), we find:

13Ref. [23] also advocated to evaluate the couplings α at successive intermediate xi scales in the problem,

which in QCD corresponds to including extra subleading-logarithmic information.
14Eq. (3.38) is again the inclusive differential cross section, where we have integrated over all values of xi

with i > n.
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Best combination (NLO/LO/LL):

|MNLO/LO/LL
0 (µ0)|2 = σNLO ∆T (1, µ0) ,

|MNLO/LO/LL
1 (µ1)|2 =

αf tree
1 (x1)

x1
∆T (1, x1)∆Q(x1, µ1) ,

...

|MNLO/LO/LL
n (µn)|2 =

αnf tree
n (x1, x2, . . . , xn)

x1x2 · · · xn
∆T (1, x1)∆Q(x1, x2) · · ·∆Q(xn, µn) .

(3.39)

For n = 1 and µ1 = x1 this reduces to eq. (3.32).

The factor of ∆T (1, x1) appears in |Mn(µn)|2 to ensure that the total cross section

has no large logarithmic dependence on µ1.
15 In fact, this is the only difference between

the LO/LL and NLO/LO/LL expressions for |Mn(µn)|2, but it is crucial to ensure that

all NLO observables (including the total cross section) are accurate to NLO with no large

logarithms. In particular, it is straightforward to integrate eq. (3.39) to show that

σ = σNLO +α2

∫ 1

µ0

dx1

∫ x1

µ1

dx2
f tree
2 (x1, x2) − f tree

1 (x1)Q(x2)

x1x2
∆T (1, x1)∆Q(x1, x2)+O(α3)

(3.40)

which has no large logarithmic dependence in µ0 or µ1 as long as eq. (3.36) holds.

3.6 The importance of phase space projection

In the above discussion, we never needed to talk about the phase space projection feature

from eq. (2.7) to write down our partonic calculations |M(µ)|2. The reason is that the

toy theory is a single-scale theory, so phase space projection acts trivially. Given a phase

space point {x1, x2, . . . , xn}, we can simply define the intermediate resolution scales as

µ̄n−1 = xn−1, µ̄n−2 = xn−2, and so on, such that the projected phase space points are

{x1, x2, . . . , xn}
µ̄n−1−→ {x1, x2, . . . , xn−1}

µ̄n−2−→ {x1, x2, . . . , xn−2} −→ . . . . (3.41)

In full QCD, there are many more scale choices one could make for µ̄, and the difference

between two different choices will yield logarithms (hopefully not large) of µ̄A/µ̄B . More

importantly, in QCD there is an important requirement of final states being on shell, e.g.

if we project two gluons into one mother gluon, we have to somehow shuffle momenta to

put that mother gluon on shell.

So why use phase space projection in QCD if it is so hard? In the language of eq. (3.39),

the reason is that we need some way of getting the analog of the factors of ∆T to appear

in |Mn(µn)|2. In some sense, ∆T is a property of the NLO calculation that we want the

LO tree-level matrix elements to inherit, but the tree-level matrix elements do not have

enough information to properly calculate ∆T themselves. But if we take an n-emission

matrix element and project it to a one-emission matrix element, then we can use our

15We cannot replace every ∆Q with ∆T because in QCD there is additional flavor structure, which would

make this choice ill-defined.
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Theory B

Theory C

µ

µAB

µBC

|MA(µ)|2

×
|MC(µBC)|2

|MB(µBC)|2

×
|MB(µAB)|2

|MA(µAB)|2

ECM

ΛIR

C

B

A

⇒

Figure 13: Using nested descriptions to define the best partonic calculations. Given a theory A

valid down to the scale µ, the partonic calculation |MA(µ)|2 can be improved using information

from a presumably better theory B which is however only valid down to a scale µAB > µ. The

“matching coefficient” |MB(µAB)|2/|MA(µAB)|2 allows the full event sample to capture all the

physics of theory B, while still retaining information about theory A below the scale µAB. The

same logic can now be repeated with a third theory C which is only valid down to a scale µBC > µAB.

existing NLO machinery to NLO-improve the LO calculations. In formulas, we can write

the n-emission cross section in eq. (3.39) as

|MNLO/LO/LL
n (µn)|2 = |MLO/LL

n (µn)|2 × |MNLO/LL
1 (µ̄1 = x1)|2

|MLO/LL
1 (µ̄1 = x1)|2

. (3.42)

The ratio on the right-hand side equals precisely ∆T (1, x1)/∆Q(1, x1) and can be thought

of as the “matching coefficient” between the NLO/LL calculation and the other Sudakov

improved tree-level calculations.

In fact, eq. (3.42) is just a specific case of a more general version of matching different

partonic descriptions and running between them. Imagine, we have a set of nested partonic

descriptions A, B, C, and so on as in figure 13, then the best partonic calculation we can

construct with the available information is

Best combination (A/B/C/· · · ):

|MA/B/C/···(µ)|2 = |MA(µ)|2 × |MB(µAB)|2
|MA(µAB)|2 × |MC(µBC)|2

|MB(µBC)|2 × · · · , (3.43)

where the various µ scales encode the multiplicities and energy scales at which the match-

ing occurs.

Though obscured in the dMC(µ) notation, but clear from eq. (3.20), the NLO/LO/LL

merged sample is equivalent to taking

A = LL , B = LO/LL , C = NLO/LL , (3.44)

where the LL description is just the parton shower written in the spirit of eq. (3.20). The

factors of |MLL(µ)|2 do not appear in eq. (3.42) because we use the parton shower not
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as partonic calculation but as phenomenological model. Though we will not pursue this

direction in the present work, we expect that creating an NiLO/NjLL merged sample will

just require finding appropriate descriptions A, B, C, and so on.

As a side note, the reversable phase space projection in the GenEvA algorithm [1] is

equivalent to the statement that we have an analytic way of calculating |MLL(µ)|2 for the

parton shower at all scales µ. One of the reasons that the GenEvA algorithm is efficient

comes from the realization that the Sudakov factors in

|MLO/LL(µ)|2
|MLL(µ)|2 (3.45)

cancel, reducing the number of calculations necessary to merge an LO/LL calculation with

the parton shower.

The next two sections deal with the technical complications introduced by full QCD.

However, the main ideas are captured by the toy example just presented, so the reader not

interested in the technical details can safely skip directly to section 6 for the results of the

NLO/LO/LL merged calculation in QCD.

4. The first emission in QCD

Having investigated the toy model in detail, we now move on to the realistic case of QCD.

In this section, we will study how to implement the QCD cross section for e+e− → n jets

up to O(αs), thus including the processes e+e− → qq̄ and e+e− → qq̄g. The extension to

final states with more than three partons will be discussed in the next section, though most

of the important physics considerations necessary to construct the NLO/LO/LL merged

sample appear here.

The essential complication for e+e− → n jets compared to the toy example is the pres-

ence of multiple well-defined energy scales. This same complication appears in the process

pp or pp̄ → n jets, so we anticipate that the same solutions present in the leptonic case

should have a generalization to the hadronic case. At the end of the day, these compli-

cations are resolved by a thorough understanding of phase space, so we will begin with

3-body phase space before moving on to the relevant QCD calculations and the definition

of the partonic matrix elements.

4.1 Three-body phase space

At the level of phase space, there are two complications in QCD compared with the toy

model studied in the previous section. First, a single emission in QCD is specified by three

independent variables, as opposed to the single variable in the toy model. Second, on top of

these three variables specifying the hadronic kinematics, there are two additional variables

describing the orientation of the hadronic system relative to the e+e− beamline.

There are many equivalent ways of choosing these five variables. For our discussion, it

will be convenient to use the thrust axis to define the orientation of the hadronic system

relative to the beamline, and we use ΩT
2 to describe this orientation. The remaining three

variables describe the kinematics of the hadronic system relative to the thrust axis, which
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we choose to be the invariant mass ta between the quark and the gluon, the invariant mass

tb between the antiquark and the gluon, as well as the azimuthal angle φ of the hadronic

system relative to the thrust axis. In other words, we decompose Lorentz-invariant 3-body

phase space as

dΦ3 =
1

(4π)5
E2

CM dΩT
2 dta dtb dφ , (4.1)

where E2
CM = (pe+ + pe−)2 and

ta =
(pq + pg)

2

E2
CM

, tb =
(pq̄ + pg)

2

E2
CM

. (4.2)

For the remainder of the discussion, we will mainly ignore the ΩT
2 and φ dependence.

The key to constructing the analog of the master formula in eq. (3.17) is to have an

unambiguous definition of the scale µ that will separate our QCD calculations from the

phenomenological parton shower. For simplicity, we will assume that the parton shower

uses virtuality

t ≡ Q2

E2
CM

(4.3)

as the evolution variable. We discuss the issues with extending our results to more modern

p⊥-ordered showers in the companion paper [1]. To keep the notion of µ as a mass scale,

we also define

µ̂2 =
µ2

E2
CM

, (4.4)

and use dimensionless variables in the remainder of this discussion. We anticipate run-

ning the GenEvA framework from 1 = E2
CM/E2

CM until the scale µ̂2, attaching a parton

shower starting from µ̂2 going down to tcut ≃ Λ2
IR/E2

CM, and finally interfacing with a

hadronization model at tcut.

The total 3-parton phase space 0 ≤ ta ≤ 1 − tb ≤ 1 is shown in figure 14. The 3-jet

region 3 is defined as the region where both ta and tb are larger than µ̂2. The 2-jet region 2

corresponds to both ta and tb being less than µ̂2. Finally, there is an ambiguous 2̃a region

where ta is greater than µ̂2 and tb is less than µ̂2, and a similar 2̃b region where the roles

of ta and tb are reversed. Formally, these phase space integration regions are defined as

∫

3

dta dtb ≡
∫ 1−µ̂2

µ̂2

dta

∫ 1−ta

µ̂2

dtb ,

∫

2

dta dtb ≡
∫ µ̂2

0
dta

∫ µ̂2

0
dtb ,

∫

2̃a

dta dtb ≡
∫ µ̂2

0
dtb

∫ 1−tb

µ̂2

dta ,

∫

2̃b

dta dtb ≡
∫ µ̂2

0
dta

∫ 1−ta

µ̂2

dtb . (4.5)

By definition, the regions 2, 2̃a, 2̃b are covered by running the phenomenological

parton shower on 2-body phase space starting at µ̂2, with the 2̃a and 2̃b regions arising

from small virtuality, small angle gluon radiation. Hence, they belong to dMC2(µ̂
2). The

remaining part of dΦ3 is 3 ≡ dΦ3(µ̂
2), and running the shower on 3 defines dMC3(µ̂

2
3).

Since nmax = 3, we need to pick an appropriate scale µ̂2
3 to avoid dead zones, similar to

our discussion in the toy model in section 3.2. What we need is the QCD-version of the
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tbµ̂2

0
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1

µ̂2

2̃a

2̃b2

3

Figure 14: The available phase space 0 ≤ ta ≤ 1 − tb ≤ 1 for e+e− → qq̄g, where ta,b are defined

in eq. (4.2). The separation between the 2-jet region and the 3-jet region is defined by a matching

scale µ̂2. Only region 3 has both ta and tb above the matching scale µ̂2 and therefore corresponds

to the 3-jet region of phase space. The ambiguous 2̃ regions could be generated by a parton shower

cut off at µ̂2 by “accidentally” populating a region closer to the QCD collinear singularity than µ̂2.

However, that part is also generated by emissions below µ̂2 and is therefore covered by dMC2(µ̂
2)

and must be vetoed in dMC3(µ̂
2
3).

condition µnmax
= xnmax

we found in the toy model. Hence, we have to decide whether to

take µ̂2
3 equal to ta or tb, and in fact, either choice would leave no dead zones.

For the moment, imagine using the parton shower to cover all of phase space. Given

the hard scattering process e+e− → qq̄, we can run the parton shower from tstart = 1. The

first emission can either come from a gluon being radiated from the quark at temit = ta or

from the antiquark at temit = tb. Regardless at what scale temit the emission occurs, the

parton shower continues to run from that scale down, filling out the rest of phase space.

Thus, knowing ta and tb alone does not permit a definition of the proper scale µ̂2 = temit,

and a wrong choice could lead to potentially large logarithms αs log2(ta/tb). The challenge

is that a point Φ3 gives us only access to ta and tb, and we have to decide how to properly

account for the logarithms of the ratio of these two scales.

We will discuss several ways to resolve this ambiguity in the definition of µ̂2, and for

now we only provide a framework that allows the µ̂2 = ta vs. tb problem to be solved

in principle. In particular, for now we will simply have two samples of 3-parton events,

3-parton events where we start the shower at ta and 3-parton events where we start the

shower at tb, and let the user decide what partonic calculations to use for each sample.

Thus, we will have three GenEvA event samples

dMC2(µ̂
2) , dMC3(µ̂

2
3 = ta) , dMC3(µ̂

2
3 = tb) , (4.6)

which give a complete covering of phase space. To not introduce double-counting in the
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cross section, we now have to be careful to remember that there are two dMC3 samples. We

stress that this potential double-counting is conceptually very different from the double-

counting between different phase space algorithms discussed earlier. Here, it arises from a

scale ambiguity in QCD which has to be resolved by calculational means.

The 2̃ regions are yet another example of a scale ambiguity and how the notion of

“above µ” and “below µ” can be so confusing. Since the dMC2 sample covers the 2̃a

region, it has to be vetoed in dMC3, despite the fact that it could have been generated by

the phenomenological model with a large angle emission above µ̂2. As seen in figure 14, a

gluon emission could have occurred at a large angle at a large scale, while for the purposes

of phase space this is part of dMC2(µ̂
2), and so the actual scale of emission should be

considered below µ̂2.

4.2 The master formula

With the event samples of eq. (4.6), we can write the differential cross section in terms of

the master formula

dσ =
dσ2(µ̂

2)

dΦ2
dMC2(µ̂

2) +
dσ3a(ta)

dΦ3
dMC3(ta) +

dσ3b(tb)

dΦ3
dMC3(tb) , (4.7)

where we are using the notation dσi/dΦ instead of |Mi|2 because we anticipate integrating

over some of the phase space variables to simplify expressions. The argument in the dσi

functions reminds us of the scale at which we start running the parton shower for those

samples. To avoid double-counting regions of phase space, the cross sections dσ3a and dσ3b

must satisfy
dσ3

dΦ3
=

dσ3a(ta)

dΦ3
+

dσ3b(tb)

dΦ3
, (4.8)

where dσ3 is the full 3-parton cross section. If we are not worried about large log2(ta/tb)

logarithms, then a simple definition of the dσ3i partonic cross sections is

dσ3a(ta)

dΦ3
=

dσ3

dΦ3
αa(Φ3) ,

dσ3b(tb)

dΦ3
=

dσ3

dΦ3
αb(Φ3) , (4.9)

where αa(Φ3) + αb(Φ3) = 1. In the absence of leading-logarithmic information, any choice

of αa and αb is equally valid, however in the presence of leading-logarithmic information

the αi’s have to be chosen to correctly treat logarithms of ta/tb.

With eq. (4.7) in hand, we can now try to find the best definitions for the partonic

cross sections dσi, but first we have to review the relevant QCD calculations.

4.3 Relevant QCD calculations

The process e+e− → qq̄g is singular as ti → 0. To understand this singularity structure,

consider the differential cross section in d = 4 − 2ǫ dimensions, and integrated over the

three angular variables ΩT
2 and φ. One finds the well-known result [79]

dσB

dtadtb
= B δ(ta) δ(tb) ,
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dσV

dtadtb
=

αsCF

2π

(

4πµ2
ǫ

E2
CM

)ǫ

B

(

− 2

ǫ2
− 3

ǫ
+ V

)

δ(ta) δ(tb) ,

dσR

dtadtb
=

αsCF

2π

(

4πµ2
ǫ

E2
CM

)ǫ 1 − 2ǫ

Γ(2 − 2ǫ)
B

R(ta, tb) − 2ǫ(ta + tb)
2

(1 − ta − tb)2ǫt1+2ǫ
a t1+2ǫ

b

, (4.10)

where µǫ is the standard renormalization scale of dimensional regularization, and has noth-

ing to do with the scale µ that separates QCD calculations from the parton shower. Here,

B denotes the Born cross section

B = Nc Q2
q

4πα2
em

3E2
CM

, (4.11)

with Nc = 3, Qq the charge of the quark, and αem the fine-structure constant.16 We have

also defined

R(ta, tb) = (1 − ta)
2 + (1 − tb)

2 , V = −8 +
7π2

6
. (4.12)

The virtual diagram only contributes at ta = tb = 0, but is infrared divergent in

4 dimensions. However, the real emission also diverges as ti → 0. Integrating these

expressions over the allowed phase space 0 ≤ ta ≤ 1 − tb ≤ 1 we find for the various

contributions to the total cross section

σB = B ,

σV =
αsCF

2π

(

4πµ2
ǫ

E2
CM

)ǫ

B

(

− 2

ǫ2
− 3

ǫ
+ V

)

,

σR =
αsCF

2π

(

4πµ2
ǫ

E2
CM

)ǫ

B

(

2

ǫ2
+

3

ǫ
+

19

2
− 7π2

6

)

, (4.13)

such that the infrared 1/ǫ divergences cancel and the total cross section gives the well-

known result

σNLO = σB + σV + σR = B

[

1 +
αsCF

2π

(

V +
19

2
− 7π2

6

)]

= B

(

1 +
3

2

αsCF

2π

)

(4.14)

in the ǫ → 0 limit.

The singularity structure of the real emission in QCD is reproduced by the well-known

Altarelli-Parisi [66] splitting function

f(ti, zi) =
1

ti

1 + z2
i

1 − zi
, (4.15)

where zi are defined as the energy fractions

za =
Eq

Eq + Eg
=

1 − tb
1 + ta

, zb =
Eq̄

Eq̄ + Eg
=

1 − ta
1 + tb

. (4.16)

16For simplicity, we are only including e+e− → γ∗ → partons. An intermediate Z-boson can easily be

included by the appropriate change in the Born cross section B.
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Rewriting the splitting functions in terms of the variables ta and tb, taking into account the

relevant Jacobian factors, we can define the analog of the Q functions in the toy example

Qa(ta, tb)

tatb
=

1

ta(ta + tb)

[

1 +

(

1 − tb
1 + ta

)2]

,
Qb(ta, tb)

tatb
=

1

tb(ta + tb)

[

1 +

(

1 − ta
1 + tb

)2]

,

(4.17)

where Qa is the splitting function for q → qg and Qb for q̄ → q̄g. One can easily verify

that the sum of the two splitting functions reproduces all the singular behavior of the

function R(ta, tb)

R(ta, tb) − Qa(ta, tb) − Qb(ta, tb)

tatb
= finite as ti → 0 . (4.18)

For later convenience, we also define a Sudakov factor

∆Q(t1, t2) = exp

[

−αsCF

2π

∫ t1

t2

dta

∫ 1−ta

0
dtb

Qa(ta, tb)

tatb

]

, (4.19)

which is symmetric in a ↔ b. The tb integration range goes down to zero because this

corresponds to the proper integration range in the original za-dependent splitting function.

For technical reasons relating to the conservation of four-momentum, the parton shower

in the companion paper [1] actually uses the splitting function

Q̃a(ta, tb)

tatb
=

tb√
1 − ta

1 + z2
∗

1 − z∗
, z∗ =

1

2

(

1 − 2tb + ta − 1√
1 − ta

)

, (4.20)

and Q̃b(ta, tb) = Q̃a(tb, ta). These Q̃ functions are perfectly consistent with the condition

of eq. (4.18) as longer as the simultaneous limit ta, tb → 0 is avoided. This double-soft

divergence leads to extra subleading logarithms in the Sudakov factor. Because we only ever

work to leading-logarithmic order, this is not a problem, though the specific distributions

obtained using Q vs. Q̃ will of course differ. Eventually, one would want to tune the Q̃

functions to minimize this subleading effect. In addition, one can use the difference as an

estimate of subleading-logarithmic effects.

4.4 Partonic cross sections at LO

In analogy with section 3.4, we can define partonic cross sections for the master formula

eq. (4.7) using the above QCD calculations. For simplicity, we will largely ignore the

dependence on ΩT
2 and φ and focus only on ta and tb.

If we only had access to a parton shower, then it might distribute events according to:

Parton shower (LL):

σ2(µ̂
2) = B

{

∆2
Q(1, µ̂2)

+
αsCF

2π

[
∫

2̃a

dtadtb
Qa(ta, tb)

tatb
∆2

Q(1, ta)+

∫

2̃b

dtadtb
Qb(ta, tb)

tatb
∆2

Q(1, tb)

]}

,

dσ3a(ta)

dtadtb
=

αsCF

2π
B

Qa(ta, tb)

tatb
∆2

Q(1, ta) ,
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dσ3b(tb)

dtadtb
=

αsCF

2π
B

Qb(ta, tb)

tatb
∆2

Q(1, tb) . (4.21)

The details of the parton shower algorithm that yield this kind of distribution are given

in the companion paper [1], though we note that this shower treats the gluon emission

from the quark and antiquark symmetrically. The fact that the Sudakov factors are always

squared comes from the fact that in a symmetric shower, the no-branching probability for

the quark and the antiquark are tied together.

For the present purposes, the most relevant information about eq. (4.21) is that these

functions include the correct leading-logarithmic resummation through the Sudakov factors

while reproducing the Born cross section:

σ2(µ̂
2) +

∫

3

dta dtb
dσ3a(ta)

dtadtb
+

∫

3

dta dtb
dσ3b(tb)

dtadtb
= B . (4.22)

The integrations over the 2̃ regions in σ2 are necessary to get the total cross section correct,

and correspond to the fact that in the shower, a gluon can split off at such a large angle from

the quark that it becomes singular with the antiquark and vice verse, effectively yielding

2-jet events, as shown in figure 14.

If we now have the tree-level real-emission calculation and ignore leading logarithms,

then the most naive partonic cross section is

Tree level (LO):

σ2(µ̂
2) = B ,

dσ3

dtadtb
=

αsCF

2π
B

R(ta, tb)

tatb
. (4.23)

At this point, we do not have enough information to define separate dσ3a and dσ3b cross

sections and will rely on some unspecified αi function to determine the relative weight of

the two different dMC3 samples, as in eq. (4.8).

While eq. (4.23) gives the correct leading order behavior for 3-jet differential distribu-

tions, the total cross section has a strong dependence on the unphysical matching scale,

which can be seen by expanding the resulting expression for the total cross section around

small values of µ̂2. This gives

σ = B

[

1 +
αsCF

2π

(

4 log2 µ̂ + 6 log µ̂ +
5

2
− π2

3

)

+ O(µ̂2)

]

. (4.24)

This double-logarithmic dependence on the matching scale is of course due to having used a

fixed-order calculation, which by construction does not sum any of the leading-logarithmic

behavior in the cross section.

The most precise way to determine the properly resummed expressions is to use renor-

malization group evolution in an effective field theory setup to determine the partonic cross

sections. However, one can use the fact that parton showers do sum the leading-logarithmic

behavior correctly to derive expressions at this order. Just as in the toy model, we can

Sudakov-improve the matrix element by finding a suitable merging of eqs. (4.21) and (4.23).
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Since there are two event samples describing the single gluon emission, care has to be

taken to minimize the effect of large log2(ta/tb) logarithms. The simplest way to do so is

to find an expression that reduces to eq. (4.21) if we were to take R(ta, tb) = Qa(ta, tb) +

Qb(ta, tb), which guarantees the Sudakov-improved result will have the same singularity

structure as the leading-logarithmic result. We choose

Sudakov-improved (LO/LL):

σ2(µ̂
2) = B

{

∆2
Q(1, µ̂2)+

αsCF

2π

[
∫

2̃a

dta dtb
Qa

tatb
∆2

Q(1, ta)+

∫

2̃b

dta dtb
Qb

tatb
∆2

Q(1, tb)

]}

,

dσ3a(ta)

dtadtb
=

αsCF

2π
B

R(ta, tb)

tatb

[

Qa

Qa + Qb
∆2

Q(1, ta)

]

,

dσ3b(tb)

dtadtb
=

αsCF

2π
B

R(ta, tb)

tatb

[

Qb

Qa + Qb
∆2

Q(1, tb)

]

, (4.25)

where we have omitted the dependence of the splitting functions on the phase space vari-

ables. The Sudakov factors in dσ3 are weighted by the relative splitting probabilities of their

respective shower history, which is equivalent to the approach of ref. [24]. By integrating

these expressions and expanding around small values of µ̂2, one can easily verify that the

leading-logarithmic dependence on µ̂2 has vanished,17 and to leading order in αs one finds

σ = B

[

1 +
αsCF

4π
(5 − 12 log 2) + O(α2

s)

]

. (4.26)

Note that the Sudakov-improved and tree-level results for dσ3 agree to leading order in αs.

Eq. (4.25) is by no means unique. For example, the dominant shower history used in

the CKKW prescription [23] is morally equivalent to

Dominant history Sudakov-improved (LO/LL):

σ2(µ̂
2) = B ∆2

Q(1, µ̂2) ,

dσ3a(ta)

dtadtb
=

αsCF

2π
B

R(ta, tb)

tatb
θ(tb > ta)∆2

Q(1, ta) ,

dσ3b(tb)

dtadtb
=

αsCF

2π
B

R(ta, tb)

tatb
θ(ta > tb)∆2

Q(1, tb) . (4.27)

The reason that this expressions works is that

R(ta, tb) θ(tb > ta) − Qa(ta, tb)

tatb
= finite as ta → 0 . (4.28)

The lack of the 2̃ integrations in σ2 can contribute at most at the subleading-logarithmic

level. As expected, there is no leading-logarithmic dependence in the total cross section

for the dominant history method18

σ = B

[

1 +
αsCF

4π

(

5 − 2π2

3
− 12 log 2

)

+ O(α2
s)

]

. (4.29)

17The fact that the subleading single-logarithmic terms αs log µ̂ vanished as well is an accident, and will

not in general be true for the Q̃ splitting functions or for gluon splitting functions.
18Again, the lack of subleading single-logarithmic terms αs log µ̂ is an accident.
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4.5 Partonic cross sections at NLO

We now want to include the virtual corrections to the 2-jet rate to obtain partonic ex-

pressions that give both differential distributions as well as the total cross section correct

to O(αs). As in the toy model, we will slowly build up towards an answer that has all

the desired properties. Ignoring the leading logarithmic dependence of the partonic cross

sections, we can use an NLO slicing method [73 – 78]

NLO slicing (NLO):

σ2(µ̂
2) = B̃(µ̂2) ,

dσ3

dtadtb
=

αsCF

2π
B

R(ta, tb)

tatb
, (4.30)

where

B̃(µ̂2) = B

[

1 +
αsCF

2π
lim
ǫ→0

(

− 2

ǫ2
− 3

ǫ
+ V +

∫

2+2̃a+2̃b

dta dtb
R(ta, tb)

t1+2ǫ
a t1+2ǫ

b

)]

. (4.31)

Note the cancellation between the terms that are divergent as ǫ → 0, such that B̃ is a finite

expression, which only depends on µ̂2. It is a simple exercise to show that the total cross

section reproduces the NLO cross section in eq. (4.14). As for the LO calculation, we do

not have enough information to separately determine dσ3a and dσ3b at this point.

While eq. (4.30) does reproduce both the differential and total cross sections correctly

to O(αs), it does not sum logarithms and has large µ̂2 dependence. The leading logarithmic

resummation can be included employing a subtraction method similar to MC@NLO [44],

and we find

NLO subtraction (NLO/LL):

σ2(µ̂
2) = B̄(µ̂2)

{

∆2
Q(1, µ̂2)

+
αsCF

2π

[
∫

2̃a

dtadtb
Qa(ta, tb)

tatb
∆2

Q(1, ta)+

∫

2̃b

dtadtb
Qb(ta, tb)

tatb
∆2

Q(1, tb)

]}

,

dσ3

dtadtb
=

αsCF

2π

[

B
R(ta, tb) − Qa(ta, tb) − Qb(ta, tb)

ta, tb

+ B̄(µ̂2)

(

Qa(ta, tb)

tatb
∆2

Q(1, ta) +
Qb(ta, tb)

tatb
∆2

Q(1, tb)

)]

, (4.32)

where

B̄(µ̂2) = B

[

1 +
αsCF

2π

(

3

2
−
∫

3

dta dtb,
R(ta, tb) − Qa(ta, tb) − Qb(ta, tb)

tatb

)]

. (4.33)

Again, this reproduces the correct differential 3-jet distributions at O(αs) as well as the

total NLO cross section of eq. (4.14). Eq. (4.32) only defines dσ3/(dtadtb), but not the

individual dσ3i/(dtadtb). To avoid large log2(ta/tb) logarithms, we have many options. The

simplest is to use eq. (4.9) to define dσ3a and dσ3b via

αa =
Qa

Qa + Qb
, αb =

Qb

Qa + Qb
. (4.34)

– 40 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
0

To see that this works, imagine that R = Qa + Qb, and note that

Qa

Qa + Qb
→ 1 as ta → 0 , (4.35)

which shows that the singularity structure will correspond to the right leading-logarithmic

behavior. In fact, eq. (4.34) is a general strategy for minimizing the effect of leading-

logarithms between intermediate scales, and we will use a variant of this approach in the

next section.

As was true in the case of the toy model, the particular form of the NLO/LL partonic

cross section in eq. (4.32) is not unique. The criteria we wanted to satisfy is the proper

resummation of the leading double-logarithms while simultaneously reproducing all observ-

ables to O(αs) accuracy. As in the toy model, we can get a simple form for an NLO/LL

partonic cross sections in analogy to ref. [46]:

NLO elegant (NLO/LL):

σ2(µ̂
2) = σNLO ∆T (µ̂2) ,

dσ3

dtadtb
=

αsCF

2π
σNLO

T (ta, tb)

tatb
∆T [min(ta, tb)] , (4.36)

where σNLO is given in eq. (4.14). The function T (ta, tb) is defined by

T (ta, tb) =
B

σNLO
R(ta, tb) , (4.37)

and has an accompanying “Sudakov factor”

∆T (t) = exp

[

−αsCF

2π

∫

3(t)
dta dtb

T (ta, tb)

tatb

]

, (4.38)

where 3(t) ≡ dΦ3(t) denotes the region of phase space with ta, tb > t. Note that ∆T (t) has

the same double-logarithmic dependence as ∆2
Q(1, t), ensuring that the leading-logarithmic

dependence is reproduced correctly. To order αs, we are also clearly reproducing both the

differential spectrum and the total rate. As before, dσ3a and dσ3b can be defined using

eqs. (4.9) and (4.34) to minimize the effect of log2(ta/tb) logarithms. Eq. (4.36) will be the

cornerstone for the NLO/LO/LL result we will present in the next section.

In our entire discussion above, we never talked about angular dependence. To keep

the discussion simple, we have implicitly assumed that the angular dependence factorizes,

but we do have to be mindful that in general, operator mixing can break this factorization.

In any case, we can easily generalize eq. (4.36) to have angular dependence by

NLO elegant with angles (NLO/LL):

dσ2(µ̂
2)

dΩT
2

= σNLO f(ΩT
2 )∆T (µ̂2) ,

dσ3

dΩT
2 dtadtbdφ

=
αsCF

2π
B

R(ΩT
2 , ta, tb, φ)

tatb
∆T [min(ta, tb)] , (4.39)
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where the normalized f(ΩT
2 ) function contains angular information about 2-jet distributions

and we have introduced the generalized real emission function R(ta, tb) → R(ΩT
2 , ta, tb, φ).

There are two different ways of defining the function T that appears in the Sudakov factor,

T (ΩT
2 , ta, tb, φ) =

B

σNLO
R(ΩT

2 , ta, tb, φ) or
B

σNLO

R(ΩT
2 , ta, tb, φ)

f(ΩT
2 )

. (4.40)

In either case, the Sudakov factor is given by

∆T (t) = exp

[

−αsCF

2π

∫

3(t)
dta dtb

∫

dΩT
2 dφ

T (ΩT
2 , ta, tb, φ)

tatb

]

. (4.41)

The first choice is easier to implement and is the strategy adopted in this paper. The second

option is likely to be more correct, but the difference can at most be at the subleading-

logarithmic level.

5. NLO/LO/LL merging

For the first emission in QCD, we could understand everything analytically, but the cal-

culations quickly become unwieldy with more than one emission. Both for simplicity of

discussion and simplicity of the GenEvA strategy, it is necessary to define more generally

how to construct an LO/LL sample and how to merge together nested descriptions of QCD.

As we saw in the previous section, in order to properly treat the double-logarithms of

ta/tb, we needed two event samples, dMC3(ta) and dMC3(tb). Since the parton shower has

two possible histories to generate the 3-parton final state (q → qg or q̄ → q̄g splitting), these

two event samples can be interpreted as representing these two possible shower histories.

This will generalize for more partonic final states, and we will have a master formula which

contains different event samples for each possible shower history, in the process giving an

unambiguous definition for the phase space projection in eq. (2.7). This will allow us to

write the NLO/LO/LL sample by combining the NLO/LL, LO/LL, and LL descriptions,

just as in the toy model.

5.1 Generalized master formula

To build the generalized master formula, we first introduce the concept of a would-be shower

history. Though phase space with a matching scale does not require us to ever talk about

parton shower histories, they are convenient for resolving logarithmic ambiguities since

shower histories track QCD singularities, so one should really think of these histories as

“singularity histories”. All of the possible leading-logarithmic ambiguities can be captured

by introducing a separate event sample for every kind of allowed shower (or singularity)

history. This gives the generalized master formula:

dσ =

nmax
∑

n=2

∑

j

dσnj(µnj)

dΦn
dMCn(µnj) , (5.1)

where j labels different shower histories for n final states, and we start running the phe-

nomenological shower at the scale µnj for each sample. Note that, similarly to eq. (4.7),
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eq. (5.1) does not introduce double-counting, but merely reflects the scale ambiguity of

QCD, and we anticipate defining dσnj in analogy with eq. (4.8).

As anticipated in section 2.3, dMCn(µnj) is defined by excising regions of n-body phase

space that are covered by running the phenomenological model on (m < n)-body phase

space starting from the various µmj scales. With so many matching scales, it is convenient

to choose µnj equal to a common scale µ, except for µnmaxj , which has to be equal to a

scale “tj” in order to cover all of phase space without αs log2(tj/tk) ambiguities. Because

scale-dependent n-body phase space does not depend on µn, there is no need for special

treatment of the nmax-body phase space. Assuming that the phenomenological model is a

virtuality-ordered shower, the excised phase space is

dΦn(µ) = dΦn(pCM; p1, p2, . . . , pn)
∏

i⋄j

θ
[

(pi + pj)
2 > µ2

]

, (5.2)

where i ⋄ j indicates pairs of partons that are associated with a QCD singularity.

Since we are choosing all of the µn<nmax
scales to be the same, the master formula in

eq. (5.1) is highly redundant for n < nmax, because many of the dMCn(µnj) event samples

are multiply covered. Despite this redundancy, keeping the notion of a would-be shower

history is convenient for the purposes of having a definition of phase space projection as

in eq. (2.7). That is, a shower history defines a map between n-body phase space and a

lower-dimensional m-body phase space

{Φn, (nj)} → {Φm, (mk)} for m < n , (5.3)

where the specifics of this map are determined by the details of a showering or clustering

procedure. Note that this map does not necessarily give a unique map Φn → Φm, but

rather gives a series of different consistent maps depending which shower history j is being

selected. One could choose to implement a unique map Φn → Φm by only considering one

type of shower history for a given phase space point.

Given a phase space point with a would-be shower history {Φn, (nj)}, we can al-

ways define the scale tj that we would need to start the phenomenological shower from

to eliminate leading-logarithmic dependence. To do so, we simply ask at what scale the

phenomenological shower would have generated the n-th branching. This is the scale we

use to define µnmaxj , and it guarantees that there are no phase space dead zones.

5.2 Sudakov improvements

We now wish to extend the LO/LL result of eq. (4.25) by adding additional tree-level

emissions. As discussed above, an LO/LL result is obtained by supplementing a tree-level

matrix element with appropriate Sudakov factors. That is, we wish to combine the n-body

tree-level matrix element (LO)
dσLO

n

dΦn
(5.4)

that has no notion of a matching scale µ, with Sudakov factors taken from the equivalent

partonic cross section for a set of n-body parton shower histories (LL)

dσLL
nj (µnj)

dΦn
, (5.5)
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where j labels the different shower histories for n final states.

Note that schematically, the expression for the LL “calculation” can be written as a

product of splitting functions and Sudakov factors,

dσLL
nj (µnj)

dΦn
= B

n−2
∏

r=1

Qj,r

2n−2
∏

s=1

∆j,s ≡ B Qj ∆j(µnj) , (5.6)

where B is the initial hard scattering matrix element, r labels the different 1 → 2 splitting

function vertices, and s labels the partons in the shower history. For convenience, we have

introduced the notation

Qj =
n−2
∏

r=1

Qj,r , ∆j(µnj) =
2n−2
∏

s=1

∆j,s , (5.7)

such that for the j-th shower history, Qj is the product of all splitting functions and ∆j(µnj)

is the product of all Sudakov factors. Since the parton shower correctly reproduces the

singularity structure of QCD, the tree-level calculation should share the same singularity

structure as the sum over all shower histories

lim
Φn→sing.

[

dσLO
n

dΦn
− B

∑

i

Qi

]

= finite. (5.8)

Accounting for these singularities, one possible Sudakov-improved partonic cross sec-

tion is

Sudakov-improved (LO/LL):

dσ
LO/LL
nj (µnj)

dΦn
=

dσLO
n

dΦn

(

B
∑

i

Qi

)−1 dσLL
nj (µnj)

dΦn
. (5.9)

Expanding this result to leading order in αs, all of the ∆ factors in dσLL
nj are equal to unity,

so summing over all of the dσ
LO/LL
nj expressions yields the tree-level result as desired. By

construction, this answer has the correct leading-logarithmic behavior because it has the

same singularity structure as the parton shower.

Eq. (5.9) is a correct LO/LL answer, but there are various choices we can make for

dσLL
nj . The first is to use the naive LL cross section from eq. (5.6), which includes the sum

over all possible shower histories. One can simplify this result, by following the path taken

by CKKW [23], and use the dominant shower history, defined as the one with the largest

value of Qj. In QCD, there is never an ambiguity as to which shower history is dominant,

and the dominant shower history always reproduces the QCD singularities. Thus,

Qdom
∑

j Qj
→ 1 ,

Qother
∑

j Qj
→ 0 . (5.10)

Taking these limits as equalities, the CKKW procedure essentially defines:
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Dominant history Sudakov-improved (LO/LL):

dσ
LO/LL
nj (µnj)

dΦn
=







dσLO
n

dΦn
∆j(µnj) j = dom,

0 j = other.
(5.11)

Eqs. (5.9) and (5.11) share the same singularity structure, so they are both valid

LO/LL results.

A different route is to try to improve on eq. (5.6). As we saw in eq. (4.21), there are

additional ñ integrations that are necessary to get the total cross section correct in the

parton shower. From the shower point of view, these integrations correspond to situations

where the parton shower populates a region of phase space that has QCD singularities

but uses a splitting function away from the singular region. That is, two partons are

“accidentally” distributed closer than the cutoff of the shower. Schematically, we can

write this as
dσLL

nj (µnj)

dΦn
= B

(

Qj ∆j +

∫

P

ñk

Qk ∆k

)

. (5.12)

These ñ regions do not exist as separate event samples, but their effect should be captured

in the n-body event sample.

At this point, it is not at all clear how to figure out which ñk integrations correspond

to which shower histories j. At the leading-logarithmic level, these ñ integrations can

simply be ignored because they are not associated with the dominant QCD singularities

and give at most subleading-logarithmic corrections. However, for high enough multiplicity,

the phase space volume of all the ñ regions is rather large, especially for moderate µ, so

numerically it is dangerous to ignore them. On the other hand, if the only reason we are

keeping the ñ integrations is for overall normalization, then it would be simpler to just

introduce ad hoc k-factors to restore the normalization.

As discussed in the companion paper [1], there is a numerically efficient way to accom-

plish the ñ integrations, so the user can address the ñ subtleties if desired. In particular,

the GenEvA algorithm has a way to figure out which “wrong” histories k should be asso-

ciated with which “right” history j, and it does this in a way that is reasonably efficient.

Because the resulting differential distributions using eqs. (5.6) and (5.12) are different,

the two different choices can be used to test for systematics in the LO/LL sample. Note

that for n = 3, using eq. (5.9) with eq. (5.12) reproduces the result of eq. (4.25). To

show our results in section 6, we will always use eq. (5.12) because of the reduced cross

section scale dependence.

5.3 Merging nested descriptions

In the case of LO/LL merging in eq. (5.9) or NLO/LL merging in eq. (4.36), we were trying

to merge together two different descriptions of the physics that both give valid predictions

at some scale µ. More generally, we are interested in cases like in figure 13 where there is

one description that gives a better description of the physics at some high scale and one

that gives a better description at a lower scale. To build an NLO/LO/LL merged sample,
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we want to use an NLO/LL result at high energies, but supplement it with additional

LO/LL information for subsequent emissions.

From the toy model in eq. (3.39) we learned that the NLO/LO/LL result for the

partonic results with more than three partons are given by the LO/LL result, except that

the first Sudakov factor changed to ∆T . How do we obtain this new Sudakov factor, which

depends on the kinematics of the first emissions? Consider the differences between the dσ3

expressions for the LO/LL and NLO/LL merged samples in eqs. (4.25) and (4.36). We will

use the convention of eq. (4.34) to define σ
NLO/LL
3a for the NLO/LL result. The ratio of the

two answers is
dσ

NLO/LL
3a (ta)

dtadtb

/

dσ
LO/LL
3a (ta)

dtadtb
=

∆T [min(ta, tb)]

∆2
Q(1, ta)

, (5.13)

and therefore can be used to extract the Sudakov factor ∆T from the NLO/LL calculation.19

While eq. (5.13) is a function of 3-body phase space, we want to apply this correction

factor to n-body matrix elements. This is straightforward, using the map from eq. (5.3) to

define the map

{Φn, (nj)} → {Φ3, (3k)} for n > 3 . (5.14)

Note that this implies that the specific value of the correction factor will depend on the par-

ticular would-be shower history and on the details of the Φn → Φ3 map. By assumption, the

map in eq. (5.3) respects QCD singularities, so any differences are formally beyond the order

we are working to, but different choices will affect the specifics of the NLO/LO/LL merging.

Putting these pieces together, we find an expression for the best partonic calculation

that GenEvA can currently implement

GenEvA best (NLO/LO/LL):

dσ
NLO/LO/LL
2 (µ2)

dΦ2
=

dσ
NLO/LL
2 (µ2)

dΦ2
,

dσ
NLO/LO/LL
3j (µ3j)

dΦ3
=

dσ
LO/LL
3j (µ3j)

dΦ3
×

dσ
NLO/LL
3j (tj)

dΦ3

/

dσ
LO/LL
3j (tj)

dΦ3
,

...

dσ
NLO/LO/LL
nj (µnj)

dΦn
=

dσ
LO/LL
nj (µnj)

dΦn
× dσ

NLO/LL
3k (tk)

dΦ3

/

dσ
LO/LL
3k (tk)

dΦ3
, (5.15)

where the value of nmax is determined by the availability of high-multiplicity tree-level ma-

trix elements, and (3k) is determined uniquely from (nj) by eq. (5.14). Note that eq. (5.13)

is still needed to define dσ3j . This is analogous to eq. (3.39), where an additional Sudakov

factor ∆Q was needed once extra emissions were added. The reason is, that the NLO/LL

sample had nmax = 3 and therefore took µ3j=tj , whereas in general the matching scale µ3j

will be lower than tj. Taking nmax = 3 and µ3j = tj , eq. (5.15) reduces to eq. (4.36).

19The fact that the numerator of eq. (5.13) is a function of min(ta, tb) instead of ta means that there

are power suppressed logarithmic ambiguities of the form (ta/tb) log(ta/tb), which are beyond the order

we are working.
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As in the toy model, eq. (5.15) is a special case of a more general construction to

merge together nested descriptions of QCD. In analogy with eq. (3.39), if we have partonic

descriptions A, B, C, . . ., then these can be consistently merged via

Best combination (A/B/C/· · ·):

dσ
A/B/C/···
nj (µnj)

dΦn
=

dσA
nj(µnj)

dΦn
×
[

dσB
n′j′(tj′)

dΦn′

/

dσA
n′j′(tj′)

dΦn′

]

×
[

dσC
n′′j′′(tj′′)

dΦn′′

/

dσB
n′′j′′(tj′′)

dΦn′′

]

× · · · . (5.16)

This merging procedure does not spare the user from the need to first merge NiLO and

NjLL descriptions that occupy the same n-body phase space. Rather, eq. (5.16) gives the

user one simple option how to supplement low-scale/high-multiplicity calculations with

additional high-scale/low-multiplicity information.

6. Results

In this section, we present the results obtained using the GenEvA program, which imple-

ments the GenEvA framework, as explained in section 2.6. As such, it uses the GenEvA algo-

rithm to generate Lorentz-invariant phase space, and then reweights the resulting events to

the distributions discussed in this work. The current implementation of GenEvA is capable

of describing e+e− → n jets, but only describes massless quarks adequately. Therefore, we

do not present results for the production of b-quark jets. A validation of the GenEvA event

generator is given in the companion paper [1].

For the fixed-order tree-level matrix elements we use the HELAS [80] Fortran routines

generated by Madgraph [81], and GenEvA currently utilizes matrix elements with up to

nmax = 6 final state partons. Final states with more than nmax partons are obtained by

a subsequent parton shower, and in general any virtuality-ordered shower could be used

for that purpose. For simplicity, here we only use the internal analytic parton shower

of the GenEvA algorithm, which is a virtuality-ordered shower that neither includes color

coherence, αs running, nor the hadronization of the final state. For this reason, the results

presented here should be viewed as a proof of concept, and not as a prediction of the shown

distributions. Unless otherwise noted, all results in this section use

ECM = 1000 GeV , µ = 50 GeV , ΛIR = 10 GeV . (6.1)

As we will see in figure 15, the matching scale µ = 50GeV is rather low in the sense that the

single-logarithmic dependence that we do not account for becomes important. However, we

choose a low scale in order to accentuate the differences between different partonic calcula-

tions and leave enough phase space volume available for high-multiplicity partonic states.

The notation for the various event samples used in this section is summarized in table 2.

We use the notation LOnmax
for tree-level matrix elements with 2 ≤ n ≤ nmax partons in

the final state, and LL indicates that leading-logarithmic Sudakov resummation is being
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Notation Given by eq. Description

LOnmax
(5.4) Tree-Level (LO)

LOnmax
/LL (5.9) with (5.12) Sudakov-Improved (LO/LL)

NLO2/LO3/LL (4.36) NLO Elegant (NLO/LL)

NLO2/LOnmax
/LL (5.15) GenEvA Best (NLO/LO/LL)

Table 2: Notation and meaning for the various event samples. LOnmax
corresponds to tree-level ma-

trix elements with 2- through nmax-emissions, and LL indicates the inclusion of leading-logarithmic

information. In this work, we only consider virtual diagrams for 2-parton final states, denoted

by NLO2. Note that the 3-parton matrix elements in the LO3/LL and NLO2/LO3/LL samples

are not the same, as eqs. (4.25) and (4.36) include different Sudakov factors. LOnmax
/LL and

NLO2/LO3/LL provide implementations of PS/ME merging and PS/NLO merging, respectively.

The NLO2/LOnmax
/LL sample is the best partonic calculation implemented by GenEvA, and simul-

taneously achieves PS/ME merging and PS/NLO merging.

used. Unlike in the companion paper [1], we always use fully merged samples that give a

complete covering of phase space. For example, LO4 includes 2-, 3-, and 4-parton tree-level

matrix elements and the remaining phase space is covered by the internal parton shower.

The same is true for LO4/LL, except that the matrix elements are now Sudakov-improved

according to eq. (5.9). Note that even without the Sudakov improvement all divergences in

LOn are regulated by the matching scale µ. Note also, that since GenEvA has no dead zones,

the LO2 sample is identical to LO2/LL, because when only 2 → 2 matrix elements are used

the parton shower always starts running at the center-of-mass energy. The matching scale

µ can also affect the meaning of nmax. For example, an LO4/LL sample with µ = ECM

would be identical to an LO2/LL sample because in this case µ would be too high to allow

for any additional emissions above µ.

For one-loop corrected matrix elements with n ≤ nmax final state partons we write

NLOnmax
, and we currently only use NLO2. For example, an NLO2/LL result corre-

sponds to an LO2/LL sample supplemented with an appropriate NLO k-factor, while

NLO2/LO3/LL corresponds to fully consistent O(αs) results, which contain all O(αs) cor-

rections from both virtual 2-parton and real-emission 3-parton diagrams, and including

leading-log resummation according to eq. (4.36). Note that the 3-parton matrix elements

in the LO3/LL and NLO2/LO3/LL samples include different Sudakov factors, as can be seen

comparing eqs. (4.25) and (4.36). An NLO2/LO4/LL sample additionally incorporates 4-

parton tree-level matrix elements following eq. (5.15), and similarly for NLO2/LOnmax
/LL.

6.1 Total cross section scale dependence

We begin by presenting the dependence of the total cross section on the matching scale

µ. On the left panel of figure 15 we show the results for nmax = 3 and on the right panel

for nmax = 6. At µ = ECM, the total cross section is given by σ(ECM) = σLO for the LO

samples and σ(ECM) = σNLO for the NLO samples. As the matching scale µ is lowered,

higher-multiplicity matrix elements are used in place of the parton shower to generate ad-

ditional emissions. Using only tree-level matrix elements, we expect a double-logarithmic µ

dependence αs log2 µ for the LO samples, but only a single-logarithmic dependence αs log µ
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Figure 15: Dependence of the total cross section on the matching scale µ for nmax = 3 (left panel)

and nmax = 6 (right panel) for 20 GeV ≤ µ ≤ 1000 GeV. The horizontal line corresponds to σNLO.

The markers show the generated results and the solid lines the fit to eq. (6.2). For the LO and

LO/LL samples σ(ECM) = σLO, and for the NLO samples σ(ECM) = σNLO. Lowering µ, higher-

multiplicity matrix elements are used in place of the parton shower to generate further emissions,

causing σ(µ) for the LO samples to scale like αs log2 µ. With a proper LO/LL merging, the scale

dependence reduces to αs log µ. Including NLO2 information further reduces it to (αs log µ)2 for

NLO2/LO6/LL (right panel), while for NLO2/LO3/LL (left panel) the cross section becomes µ

independent and identical to σNLO by construction.

LO3 LO3/LL NLO2/LO3/LL LO6 LO6/LL NLO2/LO6/LL

a1 0.713 0.893 −0.037 7.40 1.203 −0.043

a2 0.840 0.115 −0.006 2.74 0.056 −0.151

Table 3: Coefficients of the single-logarithmic (first row) and double-logarithmic (second row) µ

dependence of the total cross section in figure 15. Shown is a fit to σ(µ̂) = a0 + 2αs

π
(a1 log µ̂ +

a2 log2 µ̂) in the range 0.02 < µ̂ < 0.2, where µ̂ = µ/ECM and ECM = 1000 GeV.

for the Sudakov-improved LO/LL samples. For the NLO2/LOnmax
/LL samples, the full αs

dependence is included, and the µ dependence is thus expected to only start at (αs log µ)2.

For nmax = 3, this term is absent because the total cross section is µ-independent by con-

struction. We can clearly see in figure 15 that the scale dependence is reduced as we go

from LO to LO/LL to NLO/LO/LL.

To check the expected scaling with µ explicitly, we fit the result for the total cross

section obtained by GenEvA to the function

σ(µ̂) = a0 +
2αs

π
(a1 log µ̂ + a2 log2 µ̂) , where µ̂ =

µ

ECM
. (6.2)

This functional form neglects any contributions from power corrections of the form µ̂n,

which dominate for µ̂ ∼ 1 so we only use the range µ̂ ≤ 0.2 in the fit. The results of

the fit are shown by the solid lines in figure 15, and the fitted parameters a1 and a2 are

given in table 3. As anticipated, the LO3 result has both single- and double-logarithmic

µ dependence. Taking into account the overall factors in eq. (6.2) the values of a1 and a2

for the LO3 sample are consistent with eq. (4.24). The LO3/LL result has a much smaller

a2, indicating that the log2 µ̂ term only starts at O(α2
s), i.e. is a single-logarithmic effect,
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while a1 is of comparable size as for the LO3 sample. Thus, as expected, LO3/LL still has

a single-logarithmic dependence at O(αs). For NLO2/LO3/LL both a1 and a2 are small,

indicating that there are no logarithmic terms present at O(αs).

For the samples with nmax = 6, the cancellation of the µ dependence becomes more

dramatic. The LO6 sample shows a much larger µ dependence than LO3 due to the ac-

cumulated µ dependence of all matrix elements. Nevertheless, this large µ dependence

cancels in the Sudakov-improved LO6/LL, which has similar coefficients to LO3/LL. Fi-

nally, for NLO2/LO6/LL the value of a2 is consistent with a residual µ dependence of the

size (αs log µ̂)2, as expected.

6.2 Interpolating kinematic extremes

Next, we study how differential distributions differ in the various implementations included

in this work. We find the so-called C parameter [82] to be a particularly useful observable

to highlight these effects. Given the linear sphericity tensor [83, 84]

Sαβ =

∑

i
pα

i p
β
i

|pi|
∑

i |pi|
(6.3)

constructed out of the final state three-momenta pi, the C-parameter is defined as

C = 3 (λ1λ2 + λ2λ3 + λ3λ1) , (6.4)

where λi are the eigenvalues of Sαβ. Since
∑

i λi = 1 we have 0 ≤ C ≤ 1. Low values of

the C parameter are dominated by events which are mostly 2-jet-like, while larger values

of C indicate more and more final state jets. For planar events λ3 = 0 forcing C ≤ 0.75,

so that 3-jet events are confined to C ≤ 0.75, while events with four or more jets can

contribute up to C = 1.

We begin by studying the effect of Sudakov resummation on the tree-level matrix

elements, which is the GenEvA analog of PS/ME merging. It is well known that the leading-

logarithmic resummation for the C parameter reduces the cross section for small values of

C, with the resummed expressions given in ref. [85]. It is also well known that the pure

parton shower result overshoots the correct QCD result for large values of the C parameter,

since the interference between the two QCD diagrams contributing to the emission of a

single gluon is destructive. On the left panel of figure 16, we compare the results for the C-

parameter obtained by running the pure parton shower (LO2/LL), by using tree-level QCD

matrix elements up to order αs (LO3), and the merged result with nmax = 3 (LO3/LL).

We can see clearly how the LO2/LL sample overshoots the LO3 result for large values of

C, while it suppresses the cross section for small values of C. The merged LO3/LL result

reproduces the result of the pure QCD matrix element for large values of C, where the

leading logarithms are not important. The resummation of the double logarithmic terms

becomes important for small values of C, and we can see the Sudakov suppression of the

merged result compared to the pure matrix element for small values of C.

Note that the merged result has to approach the pure parton shower result for C → 0,

and we have checked that this is indeed the case. The reason this is not obvious from

– 50 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
0

C Parameter
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (
fb

)
σ

-310

-210

-110

1

10

210

/LL3LO

3LO
/LL2LO

C Parameter
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (
fb

)
σ

-310

-210

-110

1

10

210

/LL4LO

4LO
/LL3LO

Figure 16: PS/ME merging as implemented in GenEvA (LO/LL) with ECM = 1000 GeV and

µ = 50 GeV. The C parameter measures the “jettiness” of an event, with C ∼ 0 giving the 2-jet

region, C < 0.75 roughly giving the 3-jet region, and C > 0.75 roughly giving the 4-jet region. Left

panel: The LO3 sample has the soft-collinear divergence of the 3-parton tree-level matrix element

and therefore becomes singular near C = 0, while the LO3/LL sample regulates that divergence with

a Sudakov factor similar to LO2/LL. At large C, the LO2/LL sample lacks the quantum interference

of the 3-parton matrix element, while the LO3/LL sample contains the correct interference effects

and therefore tracks LO3. Right panel: The same interpolation for LO4/LL, which captures the

correct Sudakov-suppression of the LO3/LL sample near C ∼ 0 and at the same time includes the

extra interference effects of LO4 near C ∼ 1.

the figure is that the binning is too coarse for this effect to be visible, and the agreement

does not happen until much smaller values of C.20 To see more easily that the desired

interpolation does occur, we include one additional tree-level emission, and compare the

results for LO4, LO3/LL and LO4/LL on the right panel of figure 16. One can now clearly

see that the LO4/LL sample reproduces the LO3/LL result for small values of C. The

agreement between the LO4/LL and the LO4 sample for large values of C is not expected

to be perfect, since the Sudakov suppression has some effect all the way up to C = 1.

However, we do see that the agreement is being obtained asymptotically.

Next, we show the effect of including NLO information, which is GenEvA’s analog

of PS/NLO merging. As we saw in figure 15, the tree-level calculation contains double-

logarithmic terms which results in a rising cross section as the scale µ̂ is lowered. For the

C parameter distribution, this implies that the tree-level result diverges as − log(C)/C for

C → 0. Resumming the leading-logarithmic terms removes this dominant singularity for

small values of C, however we also see in figure 15 that the cross section of the resummed

result undershoots the correct (NLO) result. In figure 17, we compare the tree-level matrix

elements LO3, the resummed matrix elements LO3/LL, as well as the resummed NLO result

NLO2/LO3/LL. For large values of C all three results agree, as expected, because all three

samples have the same interference terms from the tree-level 3-parton matrix element. How-

20Because of the single-logarithmic effect of the ñ integrations, the LO3/LL sample first overshoots the

LO2/LL sample until finally asymptoting from above. With the ñ integrations turned off, the agreement

happens at more moderate values of C, but still smaller than our bin size.
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Figure 17: PS/NLO merging as implemented in GenEvA (NLO/LL). The NLO2/LO3/LL, LO3,

and LO3/LL samples all share the same interference effects near C = 1, given by the 3-parton tree-

level matrix element. Near C = 0, LO3 is too singular, while LO3/LL is too Sudakov suppressed.

The NLO2/LO3/LL sample has the correct NLO cross section information and therefore has the

right normalization near C = 0. Since the inclusion of NLO cross-section information affects the

form of the Sudakov factor for the NLO/LL sample, the NLO2/LO3/LL sample is not just a k-factor

modification of the tree-level resummed LO3/LL result.

ever, for C → 0, the NLO2/LO3/LL result has the correct O(αs) normalization, while LO3

is too singular, and LO3/LL too Sudakov-suppressed. Note that the NLO2/LO3/LL result

is not simply a k-factor modification of the tree-level result, because as seen in eqs. (4.25)

and (4.36), the Sudakov factors in the 2- and 3-parton matrix elements must be modified

to get the correct NLO cross section, while still incorporating leading-logarithmic results.

We now consider the NLO/LO/LL partonic calculation which combines NLO cross sec-

tion information with higher-order tree-level matrix elements, all Sudakov-improved. We

expect that in the 4-jet region (C > 0.75), the NLO2/LO4/LL sample will agree well with

the LO4/LL result, since 3-parton states do not contribute much in this region. For small

values of the C parameter, however, we expect the NLO2/LO4/LL result to be close to the

NLO2/LO3/LL result, since the NLO cross section information is important there. The re-

sults are shown on the left panel of figure 18, which confirms the expected interpolation. On

the right panel of figure 18, we give the result of the best partonic calculation current avail-

able in GenEvA: NLO2/LO6/LL. This sample includes additional interference terms from

tree-level matrix elements with n ≤ 6, while still maintaining NLO/LL accuracy. We clearly

see that the NLO2/LO6/LL sample interpolates between the LO6/LL (PS/ME merged)

sample in the interference region (C ∼ 1) and the NLO2/LO3/LL (PS/NLO merged) sam-

ple in the total cross section region (C ∼ 0). In other words, the best implementation

available in GenEvA simultaneously achieves PS/ME merging and PS/NLO merging.

Finally, on the left panel of figure 19, we illustrate the composition of the

NLO2/LO6/LL sample, showing the individual contributions of the n-parton matrix el-

ements, where n corresponds to the number of partons resolvable at the scale µ. Near the

2-jet region (C ∼ 0), the n = 2 matrix element dominates as expected. The n = 3 matrix

element fills out the region 0 < C < 0.3, and since it gives mostly planar events, it turns
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Figure 18: The combination of PS/ME merging and PS/NLO merging in GenEvA (NLO/LO/LL).

Left panel: The LO4/LL sample is the analog of PS/ME merging and contains the correct interfer-

ence of the 4-parton matrix element near C = 1, while the NLO2/LO3/LL sample is the analog of

PS/NLO merging, and has the correct cross section information near C = 0. The NLO2/LO4/LL

sample smoothly interpolates between the two different regimes. Right panel: The same interpo-

lation for nmax = 6, where NLO2/LO6/LL smoothly interpolates between LO6/LL at large C and

NLO2/LO3/LL at small C. The kinked behavior near C = 0.75 is a well-known physical effect [82],

unrelated to the merging procedure. It occurs because C ≤ 0.75 for planar events, meaning that 2-

and 3-parton matrix elements cannot contribute much for C > 0.75. The NLO2/LO6/LL sample

is the best partonic calculation currently implemented in GenEvA.

off abruptly at C = 0.75. Despite the fact that C < 0.75 is supposed to correspond to the

3-jet region, the n = 4 matrix element dominates for 0.3 < C < 0.75, because µ = 50 GeV

is so low, that the n = 4 matrix element is really being used to determine some of the jet

substructure in the 3-jet region. Above C = 0.75, the n = 4 and n = 5 matrix elements

give roughly equal contributions, with the region near C = 1 supplemented by the n = 6

matrix element. This is not surprising as the C parameter no longer resolves the difference

between 4-jet and higher-jet event shapes. On the right panel of figure 19, the same C

parameter is shown for µ = 100 GeV. With this matching scale, the separation of the

C parameter into n-jet-like regions roughly corresponds to the n-parton matrix elements.

Note that the n = 6 matrix element now barely has phase space available to contribute to

the total distribution, so the remaining matrix elements shift to compensate.

6.3 More results from GenEvA best

To get more intuition about the GenEvA Best NLO/LO/LL sample, it is helpful to use a jet

algorithm to get more differential information than is available in an event shape measure

like the C parameter. We use the FastJet package [86] for that purpose, using the inclusive

kT jet algorithm with R = 1.0 to identify jets, which are then ordered by their total energy.

On the left panel of figure 20, we show the invariant mass of the 2nd hardest jet. Events

which are almost 2-jet-like contribute to small values of this observable, while events with

well-separated partons contribute to larger values. As we saw in the previous section,

adding additional tree-level matrix elements suppresses rates for well-separated partons
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Figure 19: The five components of the GenEvA Best NLO2/LO6/LL sample. The curves for

different n show the individual contributions of the n-parton matrix elements, where n corresponds

to the number of partons resolvable at the scale µ. Left panel: µ = 50 GeV. As expected, the

n = 2 component dominates near C = 0. Because µ is so low, the n = 3 and n = 4 matrix

elements both contribute in the 3-jet (C < 0.75) region, where the crossover point C = 0.3 is

directly related to the scale µ. Above C = 0.75, the n = 3 component can no longer contribute,

and the rest of the C distribution is filled out with additional contributions from the 4-, 5-, and

6-parton matrix elements. Right panel: µ = 100GeV. For this more reasonable µ scale, the various

n-jet-like regions correspond more closely to the n-parton matrix element used. While the total C

parameter distribution is only single-logarithmically sensitive to changing the µ scale, the different

matrix element components shift dramatically, with the n = 6 matrix element now having very

little available phase space.

due to interference effects in the full matrix-element calculations. On the other hand, the

NLO information increases the cross section in regions of phase space which contribute

mostly to 2-jet-like events. Thus, we expect the NLO2/LO3/LL result to be higher than

the LO6/LL sample in the whole kinematic region, which is seen in the figure. Combining

these two results, we expect to reproduce the lower rate for well-separated partons, due to

the interference from the tree-level matrix elements, while at the same time reproducing

the enhanced cross section for almost 2-jet-like events due to the NLO information. This is

clearly seen in the NLO2/LO6/LL sample, which thus captures important physical effects

that cannot be seen by considering the PS/ME merging or PS/NLO merging results alone.

The right panel of figure 20 shows the invariant mass between the 1st and 3rd hardest

jets. Low values of this pairwise invariant mass correspond to the 2-jet-like region, and

again the NLO2/LO6/LL sample inherits the NLO cross section information. As the pair-

wise invariant mass increases, this observable gets contributions from a variety of different

event types, so the NLO2/LO6/LL sample tracks the shape of the LO6/LL result with an

overall NLO cross section increase. At very large values of this invariant mass, all three

curves give slightly different answers because this extreme kinematic region is sensitive to

the exact way in which the jets are clustered, which is strongly affected by the exact ratios

of the 4-, 5-, and 6-parton matrix elements.

As seen in the C parameter, the NLO2/LO6/LL sample combines 5 different matrix el-
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Figure 20: Comparison of the GenEvA best sample NLO2/LO6/LL with the PS/ME merging

analog LO6/LL and the PS/NLO merging analog NLO2/LO3/LL for two jet-based observables.

Left panel: The invariant mass of the 2nd hardest jet, where we can clearly see the destructive

interference in the matrix element calculation with n > 3 partons compared to the results where

these additional partons are only generated by the parton shower. The NLO2/LO6/LL sample

interpolates between the two comparison distributions, showing that GenEvA can capture important

physical effects that cannot be seen by considering the NLO2/LO3/LL or LO6/LL samples alone.

Right panel: The invariant mass between the 1st and 3rd hardest jets. Since no particular parton

multiplicity dominates at large pairwise invariant masses, the three different samples have slightly

different behaviors near the endpoint.
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Figure 21: The five components of the NLO2/LO6/LL sample for two jet-based observables. The

curves for different n show the contributions of the individual n-parton matrix elements. Left

panel: The invariant mass of the 4th hardest jet. Since GenEvA currently uses virtuality to define

the scale µ that separates different parton-level multiplicities, the invariant masses of jets have

sharp cutoffs for the different parton-multiplicity components, with the n = 4 sample turning off

at the matching scale around 50 GeV as expected (the small tail comes from the jet algorithm

“accidentally” clustering together two different quark flavors). Right panel: The invariant mass

between the 2nd and 5th hardest jets. As this pairwise invariant mass increases, the dominant

n-parton matrix element smoothly changes from n = 3 to n = 4 to n = 5.
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ements, and it is interesting to see the individual matrix-element contributions for jet-based

observables. On the left panel of figure 21, we show the results for the invariant mass of the

4th hardest jet. Since our evolution variable is equal to the virtuality between partons, the

parton shower can only generate virtualities below the staring scale of the shower, which

is chosen as µ = 50 GeV. Thus we expect that a 4th jet with invariant mass above 50 GeV

can only be generated by a partonic calculation with at least 5 partons in the final state.21

This effect is reproduced by GenEvA, and while there are sharp cutoffs in the individual

contributions of n = 2, 3, 4-parton matrix elements, the combined NLO2/LO6/LL result is

relatively smooth over the entire range of the invariant mass of the 4th hardest jet. Note

that there is a slight kink in the final distribution at the matching scale 50 GeV, which

gives a sense of the size of the subleading-logarithmic errors one makes in this merging.

For the pairwise invariant mass between the 2nd and 5th hardest jets, shown on the

right panel of figure 21, the individual partonic contributions do not cut off as sharply as

for the previous case. The dominant matrix element smoothly changes from n = 3 for

small invariant mass, to n = 4 for intermediate masses, to n = 5 towards the endpoint of

the distribution. The total result is again a very smooth function over the entire range of

the inter-jet invariant mass, with perhaps a slight kink at 175 GeV from the same n = 4

to n = 5 transition that gave a kink in the previous distribution.

As a final application, we study the scale dependence of a differential distribution for

nmax = 4. We saw in figure 15 that the µ dependence of the total cross section was reduced

when going from LO to LO/LL to NLO/LO/LL, and it is interesting to see the extent to

which this reduced scale dependence is reflected in differential distributions. In figure 22, we

show the invariant mass between the 1st and 3rd hardest jets for these three samples. We

see that the µ dependence is lowered going from LO4 sample (top left plot) to the LO4/LL

sample (top right plot). We also see how the direction of the scale dependence is reversed,

as expected from the scale dependence of the total cross section. In the bottom plot we

show the result for the NLO2/LO4/LL sample. Including the NLO information does not

change the scale dependence significantly for large values of the invariant mass, since this

is the region where the real-emission diagrams are dominant. However, for small values of

the invariant mass, i.e. in the 2-jet region, the scale dependence is reduced, mirroring the

reduced scale dependence observed in the total cross section. The residual scale dependence

is single logarithmic.

7. Conclusions

We have presented a new framework for event generation, GenEvA, which allows almost

any partonic calculation to be interfaced with a phenomenological model such as a par-

ton shower. Because the phenomenological model is assumed to include a description of

hadronization, GenEvA offers a method for inclusive partonic information to be used to

produce fully exclusive hadronic events.

21There are n = 4 events that can have jet masses slightly larger than the matching scale, because the

cutoff only applies to singularity-producing partons. One can see the effect of, say, the e+e− → uūdd̄ sample

in the rare events that have a 4th jet with invariant mass upwards of 60 GeV.
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Figure 22: Comparison of the µ dependence of the LO4, LO4/LL, and NLO2/LO4/LL samples.

Shown is the distribution of the invariant mass between the 1st and 3rd hardest jets for five different

values of the matching scale µ. Just as in figure 15, the inclusion of leading-logarithmic and NLO

cross-section information reduces the dependence on the unphysical matching scale µ. At large

invariant masses, the dominant reduction comes from including leading-logarithmic information in

high-multiplicity matrix elements. At small invariant masses, there is an additional reduction in

the µ dependence from the inclusion of NLO cross-section information.

The main conceptual breakthrough is a definition of phase space with a matching

scale. This matching scale cleanly separates partonic calculations performed in QCD from

phenomenological models based on QCD. GenEvA avoids phase space double-counting by

construction, because once GenEvA is interfaced with a parton shower, every point in per-

turbative phase space is covered once and only once. By appropriate inclusion of leading-

logarithmic information in the partonic calculations, the dominant sensitivity to the un-

physical scale which separates the partonic regime from the showering regime is removed.

In this way, GenEvA allows theorists to focus on providing the best possible partonic

calculations and not on the algorithmic details of implementing those calculations. While

other solutions to the problems of double-counting and shower merging exist in the litera-

ture, they are tailored to specific partonic calculations. For example, though there are var-

ious methods to merge tree-level calculations with parton showers [23 – 35], usually entirely

different procedures are necessary to merge NLO calculations with parton showers [40 –
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53]. In contrast, GenEvA offers a generic solution to these problems, and the NLO/LO/LL

merged sample provides an example of the kinds of improved partonic calculations that

can be developed when algorithmic issues are separated from calculational ones.

The name GenEvA is obviously inspired by the site of the upcoming LHC experiment at

CERN, and we expect to generalize the GenEvA framework to deal with additional complica-

tions present in a hadronic environment. We discuss some of these issues in our companion

paper [1], and we argue there that the complications are technical, not conceptual. Much

of the legwork has already been done, as modern parton showers implement initial state ra-

diation through backwards evolution, effectively defining the notion of a variable matching

scale for hadronic collisions.

From a theoretical point of view, the most interesting developments will be to im-

plement more advanced kinds of partonic calculations. In this work, we only considered

loop diagrams involving two final state particles, but there is a growing body of one-loop

calculations with large numbers of final states (for a recent review see ref. [87]). Because

GenEvA is agnostic as to the method of regulating IR divergences in loop diagrams, the

choice about whether to use a slicing method, a subtraction method, or an elegant method

to supplement NLO calculations with leading-logarithmic information can be made on the

basis of physics considerations alone. Also interesting will be the implementation of calcu-

lations [62, 61, 88] based on SCET [57 – 60] because it allows for a consistent treatment of

subleading logarithms.

From an experimental point of view, GenEvA offers a unique opportunity to assess

Monte Carlo systematics, as a single GenEvA event can support multiple different theo-

retical distributions, allowing theoretical errors to be probed without additional detector

simulation time [1]. The NLO/LO/LL merged sample also gives a proof-of-concept that

multiple different theoretical distributions can coexist within a single Monte Carlo sample,

allowing the experiments to use the best theoretical knowledge available for any given point

in phase space. With the possibility for sub-GeV measurements of the top quark mass and

aggressive use of Monte Carlo to extrapolate the Standard Model up to 14 TeV, we antici-

pate that the experimental collaborations will benefit from the flexibility and transparency

of the GenEvA framework in the LHC era.
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